エビとパンガシウスのバリュー・チェーンから見る 食品安全規制の課題

国際シンポジウム

食品安全規制遵守のためのサプライチェーン管理: 途上国の課題と展望

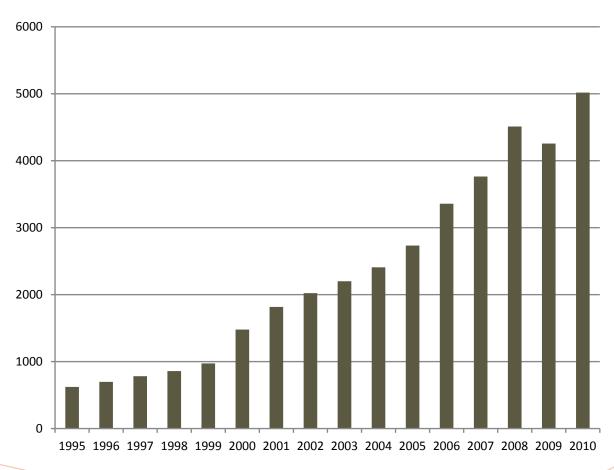
2013年9月19日

Aya Suzuki and Vu Hoang Nam

Vu Hoang Nam: ベトナム貿易大学 (<u>hoangnamftu@yahoo.com</u>)

Aya Suzuki: 東京大学 (ayaszk@k.u-tokyo.ac.jp)

- 1. イントロダクション
- 2. 食用ナマズとエビのバリュー・チェーン
- 3. 輸入国から何が求められているのか
- 4. 政策インプリケーション


1. イントロダクション

産業の発展過程

- 1980年以前:水産業において少数の国有企業が存在
- 1980~1990年:100を超える国有水産企業が出現
- 1990~2000年:
 - 市場の自由化、輸出割り当ての廃止 民間の食品加工企業、輸出企業が出現 ベトナム水産輸出加工協会(VASEP)が設立(1998年)
- 2001年:米国・ベトナム二国間通商協定
- 2007年:ベトナムがWTOに加盟

世界有数の水産物輸出国

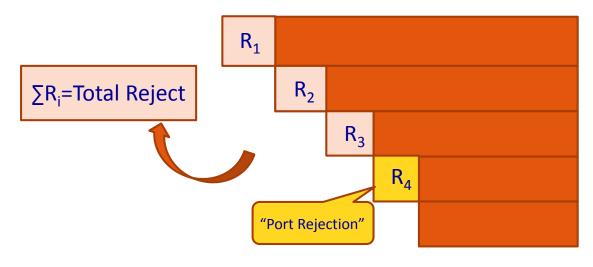
水産品の輸出額(100万USD)

Source: General Statistic Office

米国、EU、日本の検疫において、 規制違反として差し止められるケースが多い。

差し止めとなる主な理由

(EU、米国:2002~08年、日本:2006~10年)


EU		米国		日本		
Reasons	%	Reasons	%	Reasons	%	
残留動物用医薬品	34.1	衛生管理	24.4	成分規格違反 (element standard)	66.7	<u> </u>
病原性微生物	26.9	ラベリング	22.5	成分規格違反 (compositional standard)	19.6	5
重金属	8.4	病原性微生物	21.7	カビの発生	4.1	
工業汚染物	5.5	未登記のプロセス・ 生産者	10.6	使用基準違反	3.9	
成分規格等	5.1	添加物	8.0	軽微な違反物質の検出	1.8	
添加物	4.8	残留動物用医薬品	4.8	添加物	1.8	
カビ毒	3.7	有毒物質	3.0	カビ毒	1.4	
生体毒素	2.4	生体毒素	2.8	基準以上の物質の検出 (鉛、カドミウム)	0.4	
残留農薬	1.5	HACCP	0.8	包装	0.4	
衛生管理	1.3	カビ毒	0.6	子供用玩具規格違反	0.2	

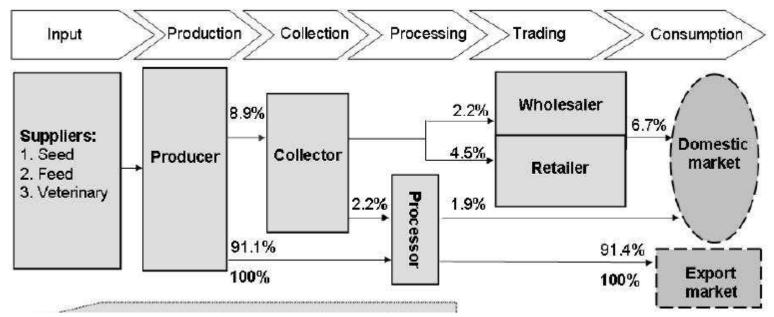
Questions

- なぜ規制違反率が高いのか?
 - ✓ ベトナムはもはや「素人」ではない
 - ✓ 輸出企業にとって、規制違反のコストは高い
- バリュー・チェーンに組み込まれているステーク・ ホールダーにとってどのような影響があるのか?

問題解決に向けた政策は?

サプライ・チェーンにおける潜在的な規制違反

幼魚の生産者 成魚の生産者 卸・収集業者 加工業者・輸出業者 EU、米国、日本の港 EU、米国、日本の消費者


各段階で違反件数を最小限に抑えられれば、利益が上がる

水産品が加工、輸出される主な地域

2. 食用ナマズとエビのバリュー・チェーン

く食用ナマズ>

- 生産者の分類
 - 独立系
 - 専属契約
 - 加工企業所有の養殖場

人口種子 幼魚

成魚

6~8ヶ月

幼魚生産者 飼育

収集業者

1~3日

加工業者

えさやり 水の交換(6~7時間/日) 病気の予防

- 幼魚の生産:より頻繁なえさやりと、化学物質・動物用医薬品の使用
- 成魚の生産:一匹当たりの占有面積が急激に増加 → 密度の増加 → 水質汚染 → より多くの食用ナマズが病気に → 動物性医薬品や化学物質、プロバイオティクスの使用過多
- 化学物質、医薬品:多くの生産者が何を使っているのか、そしてどのようにそれらを使用すべきなのかを知らない
- 品質検査:幼魚の生産者、成魚の生産者、そして収集業者は、品質を検査する設備を持っていない(目視のみで品質をチェック)

 エビと比べると、収集業者の問題は低く、運搬業者に近い 役割を担い始めている → 加工業者としては生産品の追跡 が容易になってきている(トレーサビリティ)

エビのバリュー・チェーン(ブラック・タイガー)

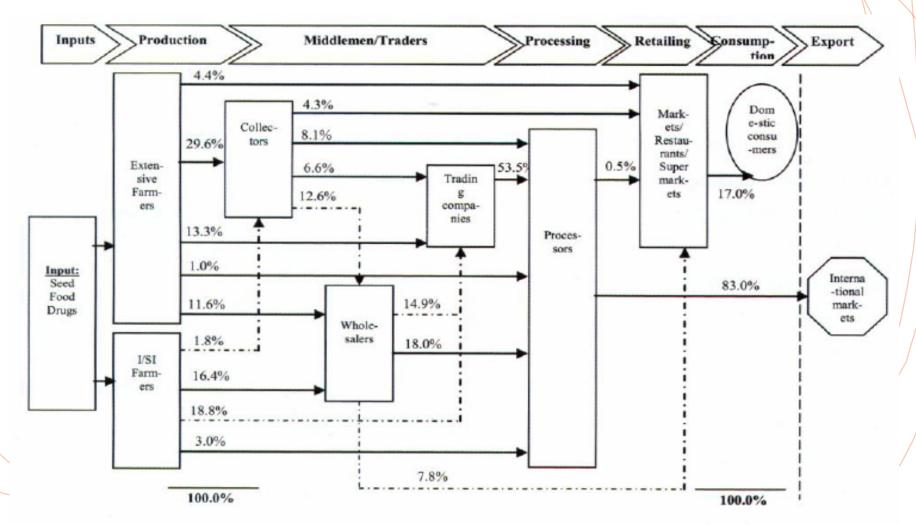
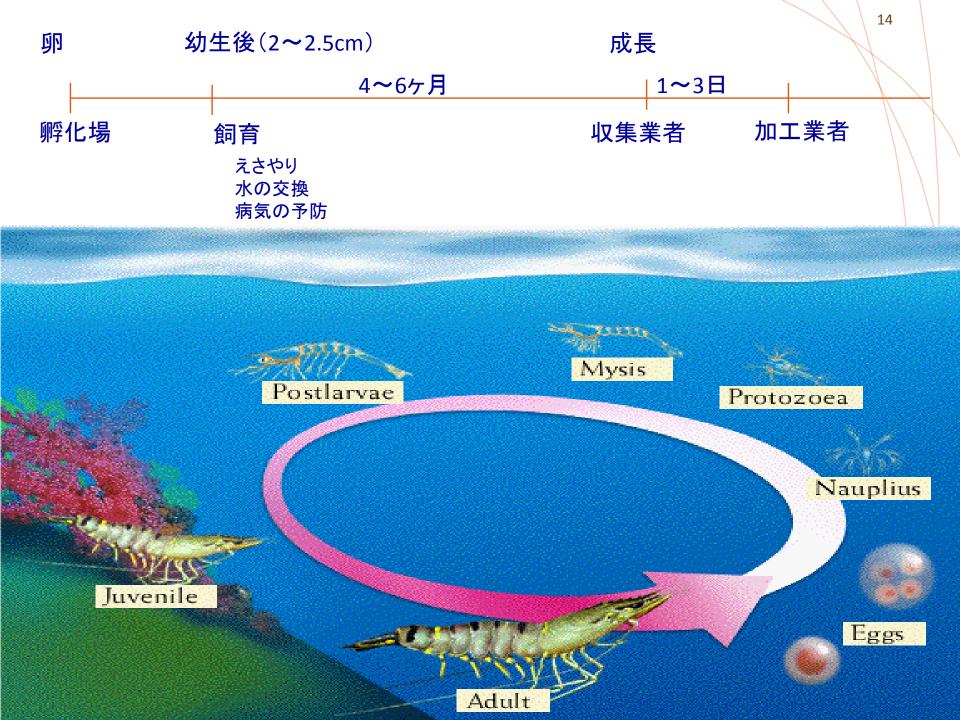
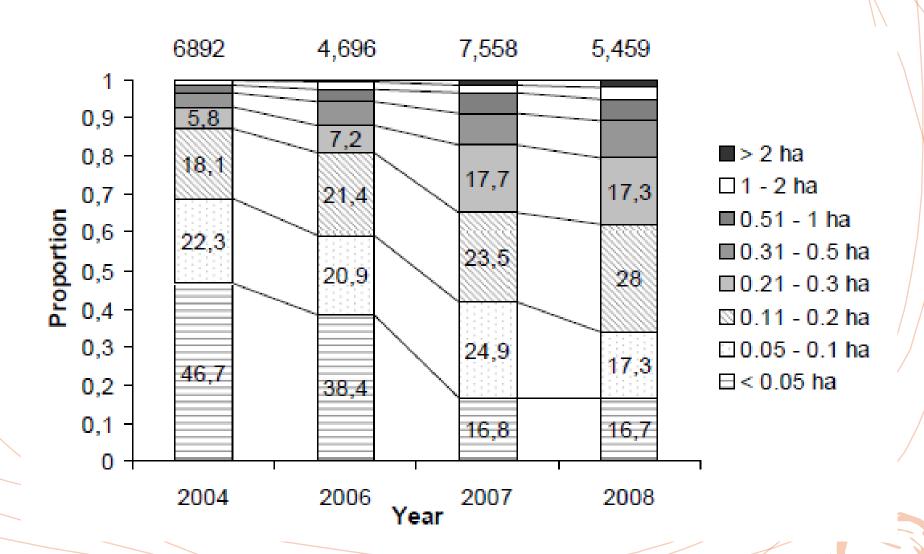



Figure 1: Mapping of the black tiger value chain in the Mekong Delta (Note: using the proportion of cultured area by farming systems in the MKD in 2008)

- 養殖所:伝統的な粗放養殖 → 改善された粗放養殖 →や
 や集約的 → 集約的養殖
- ・養殖場が窮屈となり、エビの密度が上がる(例:2009年には、 飼育場が減る一方、生産量が増加):病気になりやすい → よ り多くの化学物質や殺虫剤、抗生物質を投与;より多くのえさを 投与 → えさの残留 → 水質汚染 → 沈殿物汚染
- 品質管理: 孵化場や養殖場のみならず卸・収集業者において も品質を検査する設備を持っていない(目視によるチェック)
- ・食用ナマズと比べ、収集業者がより問題に;収集業者が別々の飼育場で成長したエビを混ぜてしまう → 追跡調査が困難に(トレーサビリティ)

食用ナマズ vs. エビ


食用ナマズ:

- 資金集約的(cash intensive)(生産コストがエビの20~ 100倍)
- 多くの加工業者が大規模生産化;小規模な生産者はサプライ・チェーンから撤退するか縮小している

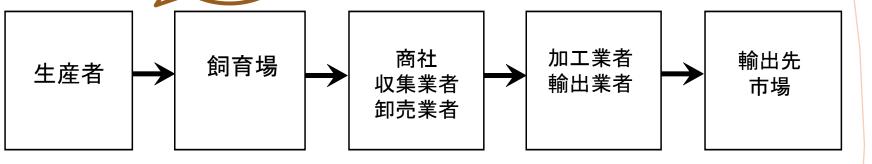
エビ:

- 沿岸の土地が必要
- 労働集約的
- 小規模生産者が主流

アンザーン州における食用ナマズの飼育場サイズの割合

Source: Khiem and others 2010

Table 3: 関連認証一覧


Source: Khiem and others 2010; Mantingh and Nguyen 2008

Certifications	Main contents	Level applied	Coverage
SQF2000	食品安全審査プログラム:加工、運送、倉庫貯蔵	工場	世界
SQF1000	食品安全審査プログラム:一次生産者	生産現場、孵化 場、工場	世界
HACCP	化学物質や生物由来の危険を防ぐための管理システム	工場	世界
GlobalGAP	欧州の小売生産団体メンバーにより導入、食品安全や トレーサビリティ、社会・環境問題に焦点	工場、生産現場	世界
BRC	英国の小売に供給する際に求められる食品安全と品質 基準。食品基準や手続きのモニタリングのために設計	工場	英国
GMP	医薬品や食品の安全と清潔さを認証するために米国食 品医薬品局により開発	薬品や化学物質 のサプライヤー	米国
ISO22000	供給網内の各アクター同士による相互コミュニケーションによる国際的な食品安全管理システム、HACCP原理を元にしたシステム管理アプローチ	工場	世界
ISO 9001-2000	消費者基準を満たすための品質管理システム、パフォ ーマンスを定量的に測定	飼料の供給者	世界
BAP	環境・社会的責任、動物愛護、食品安全、トレーサビリティを取り扱う。水産養殖に対する任意の認証プログラム	生産者	世界
OHSAS	英国基準のための労働衛生の管理システム	工場	英国
PAD	複数のステーク・ホールダーとの協議を元にした一連 の基準、WWFが主導	生産者	世界
BMP	資源をより有効に利用することで、生産者の管理能力 や収益性、環境性能を向上させることを目的とする	生産者	世界

認証とは

- 初期の認証:製品の中にどのような物質が含まれているのかが中心
- 現在の認証:より複雑となり、環境的、社会的な問題も含まれるようになっている;
- 各国・地域で独自の基準、認証を要求;
- 各国・地域によって注目する分野が違う(EUはより認証を重視するが、日本はどのように製品が運ばれてきたかをより重視する;
- 認証は常に、そして短期間で変化する
- → 輸出企業にとっては、混乱を招き、取得のためのコストも 膨大になっている

- マーケット毎に要求する品質が 違う → 加工業者は低品質商 Bottleneck! Bottleneck! 品も取り扱うことが可能

バイヤーによ バイヤーによ る目視(サイズ、 色、健康状態) 色、健康状態)

る目視(サイズ、

バイヤーによる目 視(サイズ、色、健 康状態) バイヤーによる組 織内検査(抗生物 質、生物質、残留化 学物質)

•NAFIQADによる検 査(5%サンプル)

· - ランダム·テストは完璧ではない

・輸入者側による任 意の検査

·認証を受けているのはわずか。 多くは認証のことすら知らない。 インセンティブがなく(報酬がある 訳でもなく、罰則がある訳でもな い)、コストが高いため、認証を取 得する動機が少ない。

-契約農家に対してはトー レーサビリティがある -複数の認証を取得

4. 政策インプリケーション

- 小規模農家の立場をバリュー・チェーンの中で維持するためには、公的な検査機関・サービスが効果的である。
- 農家の統合を支援する適切な政策が必要である。
- 情報や財政、技術、制度上の支援を農家や輸出企業に対し 提供するため、政府関係機関はより多くの努力が必要である。
- 承認や基準を調和させていくための国際的な努力が必要である。

ご清聴ありがとうございました