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Abstract
This paper surveys the recent development of treatment effect literature. It is intended to give practi-

cal guidance for the applied researchers and policymakers. After showing the fundamental problem

as that of missing counterfactual, we consider a variety of estimators according to the assumptions

on exogeneity. First, we will see the benefits of randomized treatment assignment. Then, we will

consider the case of randomization of eligibility, which is what is actually being randomized in most

of the social experiments. We will point out the problems in randomized eligibility assignment,

and some shortcoming of widely used intention-to-treat (ITT) estimator. Next, we will consider the

average treatment effect (ATE) estimators based on exogenous treatment assignment. Noting exo-

geneity is a strong assumption, we will also consider the tests of exogeneity. Next, we will consider

the bound-based method that can be applied when exogeneity fails and are left without instrumental

variables. It is argued that one should use bound-based method more often rather than assuming un-

realistic assumptions to get sharp conclusions. We will also consider the instrumental variable based

method and its local average treatment estimator (LATE). We will see that LATE or IV estimators are

valid only when the treatment effects are uniform across individuals, or when individuals participate

to the program without thinking of the individual benefits from participation, which are both very

unlikely. It is shown that, under heterogenous impact, the treatment effect parameter (marginal treat-

ment effect, MTE) differs across individuals with different propensity scores. With this motivation,

we will study the treatment effect at given quantile rather than the mean impact, or the quantile treat-

ment effect (QTE) estimators. An IV based estimator is shown to improve on LATE as it impose the

distribution invariance, rather than treatment effect invariance, at each quantile. Then, we will con-

sider the before-after data. Identification conditions of the widely popular difference-in-differences

(DID) estimator is shown, and its limitation in the household context in developing countries. A

novel changes-in-changes (CIC) estimator is also explained, while its limitation on the single index

assumption is pointed out. The final section gives comparison over the methods.
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Introduction

What is program evaluation? Why do we need to do it? Plainly stated, program evaluation

shows the impact of a program or a policy. It is given as the difference in the outcomes with

and without the program. We need to evaluate a program because we want to know how much

it had an impact on the outcome of interest.

The fundamental problem in program evaluation is that we cannot compare the outcomes

with and without the program for the same individual. It is impossible for an individual to be

both in and out of the program at the same time. So the problem we have is that of a missing

counterfactual. Program evaluation literature seeks to find the ways to construct the missing

counterfactual using statistical methods.

Naturally, the ways to construct the missing counterfactual depend on two things: the avail-

ability of information and data, and the statistical assumptions being met in the data. In what

follows, we will see the hierarchy of statistical assumptions, from the strongest to the weakest:

conditional treatment exogeneity, randomized eligibility, additive and time-invariant hetero-

geneity (fixed-effects), and presence of exogenous covariates. Depending on the assumptions

being met, the possible choice of estimation method is determined.

Oddly enough, it is the strongest assumption, conditional treatment exogeneity, that is being

employed most in the applied works. This is chosen probably out of the desire for ‘what needs

to be done’. Evaluators are often tempted to assume too much than warranted in the data to

draw sharp conclusions. This is because sharper conclusions are easier to read.*1 However,

what one wants does not necessarily hold in reality, and one must adhere to the principle of

‘what can be done’. This principle calls for the knowledge of conditions that each estimator

requires to correctly compute the impacts. This paper aims to serve as a practical guide for

applied researchers and policymakers to the various estimators proposed in the treatment effect

literature.

Having said the importance of statistical assumptions that hold in practice, it should be rec-

ognized that they are not something we must always take as given. They can be made to hold.

When the epidemiologists run the clinical trials in the randomized, double-blind processes,

they make sure that random treatment assignment (over the population of participating pa-

tients) holds. When the administrators of job training program under the Job Training Partner-

ship Act (JTPA) randomly assigned the training eligibility, they tried make sure that eligibility

*1 Yet there is another factor which can be more important in practice: wider availability of statistical programs
based on this assumption, a ‘supply side’ factor. For example, inR, there are three different packages of
programs that compute the propensity score matching estimator.
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is exogenously given without any recourse to the ability of each individual. The efforts and

initiative taken up by the Poverty Action Lab on social experiments are also intended to make

sure that the eligibility is randomly assigned.

The statistical methods that can be used without calling for unrealistically strong assump-

tions depend on how well the evaluators are prepared. Preparedness can be understood in terms

of: time and resources to be spent on, timing of evaluation, and implementability of program

design suited for evaluation study. If a large scale survey can be done, it will equip us with the

law of large numbers so the estimation will be more precise. If we have sufficient time, then we

can wait until the outcome of interest has completed the change due to the program. If we can

initiate the survey prior to implementation, then we can collect the baseline to be compared

with the post intervention data, which gives more reliable control over the heterogeneity of

individuals. If a bald experiment can be implemented, then, as we will see, we have less to

worry about the biasedness in the estimates.

This suggests that one needs to at least plan ahead for evaluation. One needs to plan evalu-

ation when they decide on program implementation. As we will see, having prior information

buys us credible estimation even if we do not have a large number of explanatory variables

(covariates), hence saves us with some money on collecting them. With stronger program

implementability, one can randomize the eligibility to the point nobody would not decline to

participate in the program if eligible, which will allow us more precise estimation. Or one can

set and implement without exceptions an objective rule that is not related with the capacity

of people, so we can safely assume that participants and nonparticipants are divided only by

chance.

In the next section, we will articulate the nature of the evaluation problem. In section II,

we will see how the näıve comparison between participants and nonparticipants bias the es-

timates, in the voluntary participation programs. In section III, we will see why randomized

experiments are preferred, but also caution on the use of popular ITT estimator. In section IV,

we will survey the most widely used set of cross-section estimators. We will study the tests

of exogeneity assumption that the estimators are based on. In section V, we will briefly move

away from point estimation and learn how we can bound the unknown parameter of interest

with minimal set of assumptions. In section VI, we will cover the instrumental variables based

methods, including LATE and IV estimators. It is pointed out that recent literature often argue

against the use of IV based methods. Section VII provides a glance at the growing literature

of quantile treatment effects, which can alleviate the shortcoming of IV estimators. In section

VIII, we will consider the panel data models. Widely used DID estimator is shown and the

plausibility of assumptions in the household context is discussed. We also give an illustration

of the novel CIC estimator. In the last section, we will summarize and compare the various
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techniques.We will omit the Bayesian and structural approaches because they are not practical

for the applied researchers nor the policymakers. But this does not mean that one should be

hesitant to use them, as they allow for richer heterogeneity and parameter identification.

I Counterfactual and Treatment Effects

The relationship we want to estimate is the effect of program compared with no intervention.

The indicator for program intervention, or treatment statuses, is denoted asDi = 0,1 where

1 indicates with treatment and 0 otherwise. We will estimateD’s impact on the outcome of

interest,y. The natural estimation is to get such an impact of a targeted personi:

treatment effect ofDi on i = (yi whenDi = 1)− (yi whenDi = 0),

= (yi |Di = 1)− (yi |Di = 0),

where we wrote (yi whenDi = 1) as (yi |Di = 1), and so forth. The symbol ‘|’ is used such as

‘y|x’ means ‘y is conditioned onx’, or ‘value of y whenx is given.’ If covariates (regressors)x

help explain the variations iny, then they should be included:

treatment effect ofDi on i conditional onxi = (yi |Di = 1,xi) − (yi |Di = 0, xi),

wherexi = (1, xi1, xi2, · · · , xik−1)′ is ak× 1 vector of observables.

The fundamental problem in estimating the above is that we never observeyi |Di = 1 and

yi |Di = 0 at the same time for the same individuali. So the challenge is to construct a suit-

ablecounterfactualof personi’s treatment status, that is, to construct what happened werei

did (did not) get treated wheni actually did not (did). For most of the time, constructing a

counterfactual for each individual requires strong assumptions. They base on different sets of

assumptions whose plausibility must be verified in the context of programs under question.

It is, however, possible to construct themeanof counterfactual over entire targeted popula-

tionE[yi |Di , xi ] under a set of reasonable assumptions, whereE[·] is an expectation operator.*2

The estimator we get using the population average is called theaverage treatment effect (ATE):

AT E(x) = E[yi |Di = 1,xi ] − E[yi |Di = 0, xi ].

There are several ways to construct the (means of) counterfactual. We can classify them into

four categories: methods relying on randomized treatment assignment, methods based on ob-

servable treatment assignment rules, methods using before-after data, and methods based on

instrumental variables.

*2 As we will later see, any statistic other than the mean, such as various quantiles, of population can be studied.
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It may also be of an interest to know the mean treatment effect for those who took the

treatment, or theaverage treatment effect on the treatedwhich we denote asAT E1:

AT E1 = E
[
y1i|Di = 1,xi

] − E [
y0i |Di = 1,xi

]
. (1)

We can also consider the average treatment effect on the controlAT E0 as:

AT E0 = E
[
y1i|Di = 0,xi

] − E [
y0i |Di = 0,xi

]
. (2)

Although it may sound natural to pinning down the estimates of treatment effect parameters

to the single numbers, there is another strand of thoughts that seeks to bound the estimates

under weaker assumptions. This is appealing in the cases where the assumptions usually em-

ployed to point estimate the treatment effect parameters do not hold. We are often not as

fortunate as the econometric theorists may think, and are left with data that do no satisfy the

most popular set of assumptions. The bound-based approach allows us to get some informa-

tion of the treatment effect, and with prior information, one can narrow down the bound to a

reasonably width.

Not incidentally, it is rare to see in applied works the bound being used. This may be due

to the fact that bound is not very popular among professional and nonprofessionals alike, and

even if it is, the bound is sometimes too wide. However, this should not mean that we shall

invoke the stronger assumptions to have a bound turned into a point estimate. As Manski

(1995, 8) notes, one may have to develop tolerance for greater ambiguity in estimates, and

may also have to face up with the hard fact that not all the questions can be answered credibly.

A striking fact is that, even under a randomized experiment which is considered to be the gold

standard in program evaluation, one can only get the bound of treatment effect parameter, and

one sometimes has to invoke strong assumptions to get it pinned down to a single number. In

this note, however, we will mostly focus on treatment effect parameters in numbers because

most of the debate happens in the single valued parameter domain, not in the bound domain.

In what follows, we will assume that treatment will only affect those who are treated. This

is calledstable unit treatment value assumption (SUTVA). It rules out externality in treatment

such as deworming medicine studied by Miguel and Kremer (2004), or the repercussion on

others through market mechanism, called thegeneral equilibrium effectsstudied by Heckman,

Lochner and Taber (1998). The latter can be considered as analogous to the price-taker as-

sumption in microeconomics, which is often violated in a large scale intervention that affects

prices. For example, in a large scale job training program, returns to skill may be lowered be-

cause of increased skill supply in the successful completion of the program, which may lower

the treatment effects.
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II A Selection Problem

Suppose that we want a consistent estimator of ATE. An estimatorb̂ is said to beconsistent

if
plim b̂ = b.

This means that if we take plim or theprobability limit (meaning if we increase the sample

size to infinity), the estimator̂b will coincide with the true valueb.

When we run a regression with OLS

yi = a+ bxi + ϵi ,

the necessary condition for estimated coefficientsâ andb̂ to be consistent is thatxi andϵi are

uncorrelated.*3 Although the condition is simple, it is almost always unmet in theobserva-

tional datawhere the value ofxi is chosen purposively by the agents under some optimizing

process, rather than by a researcher who prefers to randomize the values ofxi for eachi (for

an estimation purpose, which is easily done in lab experiments of hard sciences that produce

theexperimental data). So all the estimation efforts boil down to devising a way to make these

variables to become uncorrelated with each other (we say, weorthogonalize xi andϵi). For the

simplest program evaluation where only participation affectsyi , we usexi = Di .

The reason for correlation betweenDi and ϵi is clear. If the ‘ability’ (in benefiting from

the program) among individuals is not uniform, then, under voluntary participation, the par-

ticipants are more likely to have higher ability than the nonparticipants. Since we cannot

observe ability, but it affects the outcomeyi nonetheless, it must be included inϵi , for example,

ϵi = ci + ei whereci is ability of individual i known to i but unobservable to researchers and

ei is a random error term. Then,Di andci must be positively correlated, as a higher value of

ci is more likely to be associated withDi = 1 if the agents are rational, unless we explicitly

includeci in the regression. The bias of estimatedb̂, or deviation of expected value ofb̂ from

trueb, is called aselection bias, as it originates from the fact that people voluntarilyself-select

themselves into the program.

*3 Sufficiency requires the model specificationyi = a+ bxi + ϵi to be correct, not, for example,yi = a+ xb
i + ϵi ,

σ2
ϵ < ∞, andx2

i

p
−→ x̄2 < ∞.
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Figure 1: Heterogenous Impacts and Self-Selected Program Participation
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III Randomized Experiments

III.1 Randomization of Treatment

To develop a theory on treatment effect estimation, we start with the simplest setting and

assume that the treatment assignmentD = 0,1 is random. When treatment statusD is randomly

assigned to individuals, the value ofD is (statistically) independent of any variables:

randomized trials ⇐⇒ any variablesy D.

a y b meansa is independent ofb (and vice versa).

Let us consider the outcomes with and without treatment as random variables with different

means. Denote the (stochastic) outcomes with treatment asy1 and without treatment asy0.

Consider a simple example where we assumeyD for D = 0,1 is additively separable in a

systematic part (mean)µD and a stochastic partuD which varies from an individual to an

individual and has a mean of zero. Under this simple setting, we can write:

y0i = µ0 + u0i ,

y1i = µ1 + u1i .
(3)

uDi is an individual specific benefit for individuali for statusDi , and we have assumed that its

means are zero’s. Zero mean is a natural condition given we have purged all the systematic
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Figure 2: Heterogenous Impacts and Upward Biasedness of Naı̈ve Estimator
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elements intoµD.

Under this notation, if the treatment is randomly assigned, we see the first advantage of

randomized treatment assignment:

AT E≡ E[yi |Di = 1] − E[yi |Di = 0],

= E[y1i] − E[y0i] = E[µ1 + u1i] − E[µ0 + u0i] = µ1 − µ0,

where we usedE[u1i] = E[u0i] = 0. The sample analogue is:

ÂT E=
n1∑
i=0

y1i

n1
−

n0∑
i=0

y0i

n0
.

Alternatively, one can also estimate ATE by regressingy on 1 andD under a randomized

trial. Note from the definition ofyDi , we have:

yi ≡ (1− Di)y0i + Diy1i.

Plugging in the above into (3), we have:

yi = (1− Di)(µ0 + u0i) + Di(µ1 + u1i) = (µ0 + u0) + Di(µ1 − µ0) + Di(u1i − u0i). (4)

TakingE[yi |Di ], we have:

E[yi |Di ] = µ0 + E[u0|Di ] + Di(µ1 − µ0) + DiE[u1i − u0i |Di ] = µ0 + (µ1 − µ0)Di , (5)
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wherethe last equality follows fromE[u1i|Di ] = E[u1i ] and E[u0i|Di ] = E[u0i] by random

assignment ofDi , and we haveE[uDi ] = 0 by assumption. Thus the regression parameter on

Di gives ATE.

If we take into account of the other factorsx̃i = (x1i , · · · , xik−1) that affecty, we can run OLS

using all observations (treated and controls are used in the same regression):

yi = a+ αDi + β
′x̃i + ϵi .

The estimated parameter ˆα is a consistent estimate ofα or ATE, becauseϵi y Di under ran-

domized trials. Even if we do not includẽxi explicitly and run a regression ofyi on 1 andDi ,

the parameter onDi gives a consistent estimate ofAT E(x). Omitting x̃i in effect squeezesβ′x̃i

into the composite residualui = β
′x̃i + ϵi . This does not affect consistency ofAT E(x) estimate

α̂, because, under a randomized trial,Di is uncorrelated with any variables.*4 So it gives:

ÂT E(x) = α̂.

To be more rigorous on the conditional version of ATE, assume the separable model and take

E[yi |Di , xi ] on (4). NotingDi is independent of any variables, including mean and stochastic

part of y0i , y1i , we can take expectations ofyi conditional onxi separately fromDi . Thus

taking an expectation conditional onDi andxi of (4), which is equal to taking an expectation

conditional on knownxi with Di , we have:

E [
yi |Di , xi

]
= µ0 + E[u0i|Di , xi ] + (µ1 − µ0)Di + E[Di (u1i − u0i) |Di , xi ],

= µ0 + β
′
0x̃i + (µ1 − µ0)Di +

(
β1 − β0

)′ Di x̃i ,
(6)

the first line follows becauseE[Di |Di , xi ] = Di , and the second line follows because

E[Di (u1i − u0i) |Di , xi ] = DiE[u1i − u0i|Di , xi ],

= DiE[u1i − u0i|xi ],

= DiE[β′1x̃i + ϵ1i − β′0x̃i − ϵ0i|xi ].

So regressingyi on 1,x̃i , Di , Di x̃i gives an estimate of ATE as the coefficient onDi whenDi is

randomly assigned.

Another advantage of randomization is that one can sample from the entire population. In

terms ofFigure 2, one can sample from entire support of ‘ability’ distribution. So one does

not have to worry about differences in the values of covariates, because associated covariates

can be considered as also being randomly selected. This will be an important upside in the

propensity score based methods that require strong ignorability condition described in IV.3.

*4 Technically, this may affect the efficiency of estimate using the finite sample, so by includingxi should give
more precise estimate ofα than the mean difference.
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Notethat, from ATE and ATE1 we have:

AT E=
∫
X

{E[y1 − y0|D = 0,x] Pr[D = 0|x] + E[y1 − y0|D = 1,x] Pr[D = 1|x]}dF(x),

=

∫
X

E[y1 − y0|x]dF(x),

becauseE[y1 − y0|D, x] = E[y1 − y0|x] under conditional mean independence. Similarly for

ATE1:

AT E1 =

∫
X1

E[y1 − y0|x]dF(x),

and ifX , X1, ATE,ATE1.

III.2 Randomization of Eligibility

It should be noted that, under individual freedom, it is not the treatment statusDi that is

being randomized, because it is difficult to force someone who are unwilling to be treated. An

experimenter can only randomly assign theeligibility to participate in treatment. Eligibility is

not equal to treatment, because some individuals can opt out (called an exclusion error or a

type 1 error). Comparing the effects of the eligible group over the ineligible group gives the

intention-to-treat (ITT)estimator. An ITT estimator can be of an interest to the policymakers

who understand the inability to assign treatment at will. It gives the mean outcome difference

when the treatment is offered and when it is not. Denoting the eligible withzi = 1 and the

ineligible withzi = 0, an ITT estimator for mean impact is given by taking a difference between

the mean outcome of the eligible and the ineligible:

ÎTT =
∑
zi=1

yi

n1
−

∑
zi=0

yi

n0
,

wheren1 is the number of eligible andn0 is the number of ineligible individuals.

The group of people who are influenced by eligibility belongs to unknown subpopulation,

and the ITT estimator gives the weighted average of who participated and who opted out less

the average of ineligible group, with the weights possibly being a function of unobservables. So

the difference in the averages of two groups does not give ATE. This echoes with the criticism

raised against the instrumental variable estimator of ATE which we will cover later on. It is

also shown that the ITT estimator for the mean does not give ATE1 either.

To see these points, let us consider an example. Suppose that there are two types of indi-

viduals, one who wishes to get treated if eligible (wishers), and one who wishes not to get

treated even if eligible (nonwishers). The fraction of wishers in population isw ∈ [0, 1]. Non-

wishers have the outcome ofyi = a, while wishers without treatment haveyi = b, and wishers
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with treatment haveyi = c. So ATE1 is given byc − b.*5 When an experimenter random-

izes the eligibility, we assume that only the wishers with eligibility assigned will get treated.

(We therefore assume that there is no one treated if ineligible or if being a nonwisher.) Then,

the mean outcome for the eligible is a weighted average of nonwishers and eligible wishers,

(1− w)a+ wc, while the mean outcome of the ineligible is a weighted average of nonwishers

and ineligible wishers, (1− w)a+ wb. The ITT estimator gives:

ÎTT = w(c− b).

So it does not give ATE1, but ATE1 multiplied with wisher proportion in the population.*6

Note that the ITT estimator is increasing in wisher proportionw. So the ITT estimator may

be sensitive to the popularity of treatment among the subjects, which poses inconvenience

because the perception can be different from the objective facts. It is also problematic because

popularity or wishers proportions can vary with regions or time, and it may also be a function

of how much resources are spent on educating the public about the benefits of treatment. So

w can be endogenous to both program placement and specificities of program operations. This

means that a large ITT estimate may not hold in other areas under different population and

different program administration. In short, ITT estimator certainly serves as a reference, but it

may not be useful due to its lack of external validity.

III.3 Pitfalls in Randomized Studies

If it is admissible to restrict program implementation only to a group of regions, then one

can use distant regions with similar characteristics to construct the counterfactual. However,

in practice, there remains an ethical and political problem whether one can restrict program

implementation to one group of regions when there is another, yet distant, group with similar

characteristics hence the similar needs for intervention.

Then how feasible for an authority to randomize the eligibility? It may seem politically

infeasible to randomize the eligibility across individuals. However, if the request for program

is strong and the funding or logistical capacity is limited, sometimes it is perceived as fairer to

*5 ATE should not be the interest of experimenter under free individual will in this case, because no one from
nonwishers would never, ever, get treated.

*6 Had the proportions of wishers differ between the eligible and the ineligible, then the ITT estimator does not
give an interesting parameter. Denoting wisher proportion of the eligible asw1 and the ineligible asw0,

ÎTT = w1(c− a) − w0(b− a).

The proportions may differ if an experiment is done against two different areas. Note that we may not be able to
estimatew0. If there is no one from the ineligible take the treatment, LATE, an instrumental variable estimator
of treatment effects to be covered later, gives ATE1 because it divides the ITT estimator with the difference in
treated proportion among the eligible and the ineligible, orw− 0 = w.
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randomizethe program eligibility. This is mostly the case for NGOs or governments with lim-

ited administrative capacities. Examples include Progresa of Mexico which randomized over

regions (to be the first to get the program), school voucher program in Columbia which used

a lottery for students, Bolivian Social Fund that randomized over communities, deworming

medicines and schooling inputs (flip charts, school meals) interventions that randomized over

Kenyan schools in backward districts, and, (the converse case of too few demand of) military

service draft in the US during the Viet Nam War.

In addition to ethical and political economy concerns, there may be bias induced in ran-

domized studies due to lack of capacity on the part of experimenters. In their careful review

of social experiments in the US, Heckman and Smith (1995) point that, in one labor market

program, inability of experimenter to find a sufficient number of control has lead to an ex-

pansion of target population beyond the original plan which alters the composition of subject

pool. They also note the possibility that experimenters may use the threats of termination on

the individuals who are currently receiving other benefits not to drop out, so would-be drop

outs or opt outs are included in experiments by forced compliance. Thus the operational as-

pects of randomized studies may affect the subject pools both in the treated and the control.

Suchrandomization biasleads to different composition of subject pools than voluntary-based

programs, so the estimated parameters may not be relevant for the ITT estimator.

Another possible bias Heckman and Smith (1995) suggest issubstitution bias. This is the

problem of contamination when there is an alternative program available for the control. Any

treatment effect estimates are thus interpreted as the effects of treatment over whatever avail-

able substitutes to it, which are not the proper counterfactual. This is likely to be serious if

the need for treatment under question is widely acknowledged and there is competition over

implementation. NGOs in developing countries often compete with each other in achieving

better outcomes, which is quite sound by itself. However, this may contaminate the control

by providing the substitutes or inducing migration to other NGO’s domain.*7 So it becomes

crucial for successful implementation of randomized experiments that the experimenter holds

monopoly power over the provision of services. This will narrow down the feasible area for a

randomized study.

In an important paper, Manski (1996) shows three other types of problems that an evaluator

may face in social experiments. The first problem ispartial compliance. Note that the average

treatment effect on the eligible can be written as:

E[y1 − y0|zi = 1] = {E[y1|Di = 1, zi = 1] − E[y0|Di = 1,zi = 1]}Pr[Di = 1|zi = 1]

+ {E[y1|Di = 0,zi = 1] − E[y0|Di = 0,zi = 1]}Pr[Di = 0|zi = 1].

*7 Even if each NGO segments the regions, such segmentation is endogenous and is likely to bias the estimates
through nonrandom program placement.
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Given thatzi is randomized, ATE on the eligible is just an ATE. In social experiments, we

observe the outcomes of eligible compliers, so their mean valueE[y1|Di = 1,zi = 1] and

their proportion Pr[Di = 1|zi = 1] among the eligible can be computed. It may be possible

(but not in every social experiment) to observe the outcomes of eligible noncompliers, so we

can getE[y0|Di = 0,zi = 1] and their proportion Pr[Di = 0|zi = 1]. But social experiments

do not give the counterfactual outcomes of compliersE[y0|Di = 1,zi = 1] and noncompliers

E[y1|Di = 0,zi = 1], which makes us impossible to compute ATE. This is due to the fact that

experiments cannot provide the joint distribution ofy1 andy0 because one cannot observey0

andy1 at the same time. So one cannot obtain the joint distribution or conditional densities

f (y1|y0) and f (y0|y1) which are required to computeE[y] under some policy.

If we assume that mean outcomes would be the same between compliers and noncompliers,

E[y0|Di = 1,zi = 1] = E[y0|Di = 0,zi = 1],

E[y1|Di = 0,zi = 1] = E[y1|Di = 1,zi = 1],

or
E[yD|Di = 1, zi = 1] = E[yD|Di = 0,zi = 1] = E[yD|zi = 1], (7)

then ATE is identified.

E[y1 − y0|zi = 1] = {E[y1|Di = 1, zi = 1] − E[y0|Di = 0,zi = 1]}Pr[Di = 1|zi = 1]

+ {E[y1|Di = 1,zi = 1] − E[y0|Di = 0,zi = 1]}Pr[Di = 0|zi = 1],

= E[y1|Di = 1,zi = 1] − E[y0|Di = 0,zi = 1].

(7) is called theexogenous complianceassumption because the mean outcome of compliers

and noncompliers are assumed to be the same once the treatment is assigned (or not assigned).

Imposing exogenous compliance is one way of dealing with partial compliance. However,

it effectively trades wide credibility of estimate for stronger conclusions. As Manski (1996)

notes, if credibility is a central concern in evaluation, it is not an attractive way in dealing with

the problem of missing counterfactual. Another way to deal with it is computing the bounds

on the estimates. DenotekD andk̄D aslogical lower- and upper-bounds on the mean outcome

yD for eligible noncompliers. Then:

E[y1|Di = 1, zi = 1] Pr[Di = 1|zi = 1] + k1 Pr[Di = 0|zi = 1]

6 E[y1|zi = 1]

6 E[y1|Di = 1,zi = 1] Pr[Di = 1|zi = 1]

+ k̄1 Pr[Di = 0|zi = 1],

and
E[y0|Di = 1, zi = 1] Pr[Di = 1|zi = 1] + k0 Pr[Di = 0|zi = 1]

6 E[y0|zi = 1]

6 E[y0|Di = 1,zi = 1] Pr[Di = 1|zi = 1]

+ k̄0 Pr[Di = 0|zi = 1].
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Then: [
E [

y1|Di = 1,zi = 1
] − k̄0

]
Pr[Di = 1|zi = 1]

−
[
E [

y0|Di = 0,zi = 1
] − k1

]
Pr[Di = 0|zi = 1]

6 E[y1 − y0|zi = 1]

6
[
E [

y1|Di = 1,zi = 1
] − k0

]
Pr[Di = 1|zi = 1]

−
[
E [

y0|Di = 0,zi = 1
] − k̄1

]
Pr[Di = 0|zi = 1].

or (
µ1 − k̄0

)
(1− p)−

(
µ0 − k1

)
p 6 E[y1 − y0] 6

(
µ1 − k0

)
(1− p)−

(
µ1 − k̄1

)
p, (8)

wherewe suppressed the conditioning eventzi = 1 inE[y1−y0] because eligibility is randomly

assigned, and

µ1 = E
[
y1|Di = 1,zi = 1

]
, µ0 = E

[
y0|Di = 0,zi = 1

]
,

p = Pr[Di = 0|zi = 1].

The above bound may not be narrow enough, so it may not give a useful answer to the question

that policymakers ask. However, a weaker conclusion is a price of wider credibility as we

maintained on not imposing strong assumptions as in (7). One sees that, if we assume to know

the way this subpopulation of wishers represents the entire population, then one obtains the

treatment effects in numbers. If, on the other hand, we would not want to assume such, then

we only get the bounds.

The second problem in an experimental study isstratification, or experimentation on a sub-

population. This happens if the subjects are drawn from a particular subpopulation. Man-

ski (1996) gives examples: clinical trials are often tested on the subpopulation of volunteers,

Illinois Unemployment Insurance experiment is tested on people who are already on the un-

employment insurance, Jobs Opportunities and Basic Skills of 1988 drew sample from Aid

to Families with Dependent Children (AFDC) recipients. Denoting the indicator of subpop-

ulation asS = 1, one needs theexogenous stratificationassumption in order to obtain the

population treatment effect from the subpopulation:

yD y S. (9)

(9) is highly unlikely if S represents participants of a social program, because people who

are under certain social program find it beneficial to subscribe. IfS represents geographical

stratification, (9) may hold in some cases, for example, randomization over implementation

order. If S represents an income classes or social groups, again, (9) is implausible because

the entitlements are usually different among different income classes and social groups. It is

straightforward to show that assuming (9) on the subpopulation of wishers or particular strata
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gives treatment effect parameter in numbers, while not doing so will give the bound on the

parameter.

The third problem istreatment variation. This is a problem in scaling-up an experiment:

an evaluator wants to estimate the treatment effect applied to the new population where some

of the intended subpopulation may or may not get treated, while the evaluator has the knowl-

edge of marginal distributions ofyD for bothD = 0,1 from the existing experiments. Despite

randomized experiments give the marginals, it is rarely the case that the same implementation

of assignment rule used in experiments applies when it came to be scaled-up. This happens if

universal implementation of treatment is untenable due to budgetary and logistical constraints,

or if there is partial compliance in the program. So the randomized experiments may not pro-

vide a sufficiently informative reference. This can be considered as the operational counterpart

of randomization bias.

The problem, then, is to get the possible outcome distribution under partial compliance or

different assignment rules. Manski (1997) calls it themixing problem: findingE[y] under some

policy that allows arbirtrary partial compliance or nonuniform treatment, using the knowledge

of marginalsE[y|D] from fully complied experimental studies. Manski (1995), (1997) show

that, under a binary treatment, one can construct the bound on Pr[y]. Naturally, depending on

the assumption one makes, the bounds differ. We will cover the bound based methods in detail

in the later section.

So one must be careful when reading upon a claim that a randomized social program ‘is

found to have an impact’ or ‘significantly affects the outcome’, because, even with the ran-

domized studies, there may be bias. Even if there is no bias, one can only get an ITT estimator

which has questionable external validity. Further, even if it has external validity, the actual,

feasible policy implementation may be different from experiments.*8 Without prior informa-

tion or further assumptions, the most robust statement can only be made with the bound, not

the point estimates. Quoting from Manski (1996, 731):

My own research, whether based on experimental or nonexperimental data, reveals a prefer-

ence to maintain weak assumptions to keep attention focused on treatment effects in populations

in substantive interest. If that means one can only bound the treatment of interest, so be it.

While Manski (1996) stops at the conservative bound estimates, Heckman and Smith (1995)

advocate for using nonexperimental estimation. In addition to the pitfalls in randomized studies

suggested so far, they argue that randomized studies: do not provide insights into the mech-

anism behind the success/failure of program, are not easy to understand under the presence

of randomization bias, cannot build upon the cumulative knowledge of the nonexperimental

*8 Thisapplies equally to the nonexperimental estimators, though.
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studies,cannot learn about the drop out or opt out processes, tend to suffer from lack of admin-

istrative supports.*9 Citing Lalonde (1986)’s influential study that compared nonexperimental

estimators with an experimental estimator, they note that limited sample size, limited range

of applicable nonexperimental estimators, and lack of model selection strategies usually per-

formed in nonexperimental model checks. Heckman, Ichimura, Smith, and Todd (1998) use

experimental data of JPTA and show that propensity score based methods and DID give results

consistent with the experimental evidence. They also note the benefits of nonexperimental data

when having participants and nonparticipants to be in the same labor market so one can iden-

tify parameters over entire support of propensity score, applying the same questionnaire to both

groups, and including information on recent labor market experiences. This is in a sense a little

odd because they are basing their benchmark on the experimental estimator, while Heckman is

rather critical on its use in Heckman and Smith (1995).

A problem similar to partial compliance in randomized experiments is attrition. In practice,

one can drop out after learning the net benefits of the treatment. This will pose a selectiv-

ity problem if the drop outs are experiencing or learning the unobservable disutility in the

treatment. Chan and Hamilton (2006) use structural estimation to estimate the impacts of

unobservable individual side effects in explaining the drop outs in a clinical trial. The iden-

tifying assumption of individual side effects bases on the fact that the trial was conducted in

the double-blind process, so the assignment to particular treatment does not reflect the prior

beliefs or the preferences over treatment choice, so drop out process reveals the heterogenous

impact of each treatment. This condition, however, should not hold in the social experiments.

So an ITT estimator may overestimate the impact if attrition is due to negative selection.

• Progresa (a conditional cash transfer program, see Skoufias, 2005): randomizing at the district levels, then
enforce eligibility criterion on households.

• Kenyan school meal programs (Vermeersch, 2003), deworming projects (Miguel and Kremer, 2004): Ran-
domizing at the school level.

• Angrist et al. (2002) examine randomized voucher assignments for private school tuitions in Columbia. They
found increases in test scores and likelihood of finishing 8th grade, and reduction in repetitions.

• Banerjee et al. (2005) use randomized sample of schools for remedial education.

IV Methods Based on Exogenous Treatment Assignment

Although we used the independence ofDi with any other variables, (6) is actually derived

under a weaker assumption. Suppose that:

E [
yDi |Di , xi

]
= E [

yDi |xi
]

or (y0i , y1i y Di)|xi ⇐⇒ (ϵ0i , ϵ1i y Di)|xi . (10)

*9 The‘black-box’ness of randomized studies has also been pointed out in Ito (2006) in the context of development
studies.
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Thefirst equality shows that even if corr[Di , yDi ] , 0 or outcome is allowed to depend on par-

ticipation statusDi , we assume that participation is systematically explained byxi , meaning

expected value ofDi is fully explained withxi , leaving only the random errors unexplained.

So the value ofDi , the actual participation status ofi, becomes redundant information in esti-

mating the mean ofyDi , the outcome ofi under both treatedDi = 1 and untreatedDi = 0, once

we condition onxi . This means that any systematic part inyDi that are correlated withDi is

fully explained byxi . This assumption is called under different names:

• conditional mean independence(E [
yDi |Di , xi

]
= E [

yDi |xi
]
) or mean independence con-

ditional onxi , as mean ofyDi is independent of treatmentDi once we condition onxi ,

or,

• ignorability of treatment(y0i , y1i y Di |xi), asDi does not play any role once we condi-

tion onxi , or,

• selection on observablesxi (ϵ0i , ϵ1i y Di |xi), because the assumption thatDi is fully

explained byx, thusD(xi), is equivalent to an assumption that the selection into the

treatment is fully explained only by observablesxi .

All of three point to the same statistical assumption in the context of estimating ATE.*10 We call

this family of assumptions ‘exogenous treatment assignment’ because it impliesE [DiϵDi ] = 0,

as opposed to the endogenous treatment assignment which occurs whenE [DiϵDi ] , 0.

(ϵ0i, ϵ1i y Di)|xi means there can be some factors not captured inxi to be included inϵ0i , ϵ1i ,

but they must be independent of treatment statusDi , such as errors unrelated to ‘ability.’ Then

(4) becomes:

E [
yi |Di , xi

]
= µ0 + E[ϵ0i|Di , xi ] + (µ1 − µ0)E [Di |Di , xi ] + E[Di (ϵ1i − ϵ0i) |Di , xi ],

= µ0 + E[ϵ0i|xi ] + (µ1 − µ0)Di + Di (E[ϵ1i |xi ] − E[ϵ0i|xi ]) ,

under (10), becauseE [ϵDi |Di , xi ] = E [ϵDi |xi ] and E[DiϵDi |Di , xi ] = DiE[ϵDi |Di , xi ] =

DiE[ϵDi |xi ] under conditional mean independence or (ϵ0i , ϵ1i y Di)|xi . Thus, if we let

E [ϵDi |xi ] = β̃
′
Dx̃, we get the same result as (6) under a weaker assumption of conditional mean

independence.

An illustration of conditional mean independence is:

E [
y0i|Di = 1,xi

]
= E [

y0i|Di = 0,xi
]
= E [

y0i |xi
]
.

The expected value of a hypothetical outcomey0i (not being treated) of the individual who

is actually treated is the same for that of the controls, once we condition onxi . So if we

*10 Strictly speaking, the latter two are conditional independence which can be applied to entire distribution while
the first is mean independence which is only restricted to the mean.
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control for the differences inxi , the (mean) outcome will be the same for the treated and the

controls, meaning we have independence in mean conditional onxi . E.g., without FONCODES

interventions, all the mean outcomes of villages will be the same between the treated and the

control (for the latter we observe), if we base our expectation on observablesxi . Under our

assumption, this also holds true fory1i, or E [
y1i|Di = 1,xi

]
= E [

y1i |Di = 0,xi
]
= E [

y1i|xi
]
.

Given the conditional expectations ofy0i , y1i are the same for both treatment statusesDi = 0,1,

the actual value ofDi becomes irrelevant in computing the conditional expectations.

As noted, under this assumptionDi becomes redundant once we condition onxi , we have:

E [
y0i |Di = 1,xi

]
= E [

y0i|Di = 0, xi
]

indicating that the missing counterfactualE [
y0i|Di = 1,xi

]
can be constructed from the controls

by E [
y0i|Di = 0,xi

]
. Then, it is clear that if the above relationship is used for constructing

the mean counterfactual for the treatedE [
y0i|Di = 1,xi

]
, we are conditioning onD1i = 1, or

estimating ATE on the treated:

AT E1 = E
[
y1i|Di = 1,xi

] − E [
y0i |Di = 1,xi

]
.

This can be estimated under conditional mean independence:

AT E1 = E
[
y1i|Di = 1,xi

] − E [
y0i |Di = 0,xi

]
.

Also note that if we are going to estimate ATE on the controls (Di = 0), then we use

E [
y1i|Di = 0,xi

]
= E [

y1i|Di = 1,xi
]
,

thus we have ATE on the controlAT E0 as:

AT E0 = E
[
y1i|Di = 0,xi

] − E [
y0i |Di = 0,xi

]
,

= E [
y1i|Di = 1,xi

] − E [
y0i |Di = 0,xi

]
,

which is exactly the same asAT E1. This is logical since, under exogenous treatment assign-

ment, the opposite group can be used as the counterfactual after appropriate control of the

covariates.

In estimatingAT E1, we actually need only conditional mean independence fory0i, not for

y1i (because we want the counterfactual ofy1i):

E [
y0i|Di , xi

]
= E [

y0i|xi
]

or (y0i y Di)|xi .

In estimatingAT E0, we need likewise:

E [
y1i|Di , xi

]
= E [

y1i|xi
]

or (y1i y Di)|xi .

So we are invoking different statistical assumptions when estimatingAT E0 and AT E1, al-

though the values of estimates are the same.
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In practice, there are four methods that are available in estimating treatment effects under

the assumption of exogenous treatment assignment. These differ in the way to compute the

conditional means: regression, matching, propensity score, matching by blocking, and mixture

methods. We will also consider the tests of exogeneity assumption. See Wooldridge (2002)

and Imbens (2004) for more detailed presentation from which I draw heavily. I will turn to

each of them in below.

IV.1 Regression Based Methods

Regression based method estimates the means of outcomes under no treatmentµ0 and under

treatmentµ1 with regression, often using covariatesx. Thus

AT E(x) = µ1(x) − µ0(x).

There are two ways to estimate meansµ1(x), µ0(x).

• Parametric method:

yi = c+ αDi + β
′xi + δ

′Di(xi − x̄) + ei ,

with
AT E(xi) = α̂ + δ̂

′
(xi − x̄)

xi term remains because we allowE[Dixi ] , 0. This can be derived by assuming a

linear function forE[ϵDi |xi ] in (6). DenotingE[x i ] = µx, take:

E[ϵDi |xi ] = β
′
Di(xi − µx) with E[ϵDi ] = EX

[E[ϵDi |xi ]
]
= 0.

We have subtractedµx from xi for E[ϵDi ] = EX
[E[ϵDi |xi ]

]
= 0 to hold. It can also be

seen as the additional control for the difference in covariates distribution. Then

E [
yi |Di , xi

]
= µ0 + E[ϵ0i |xi ] + (µ1 − µ0)Di + Di (E[ϵ1i|xi ] − E[ϵ0i |xi ]) ,

= (µ0 − β′0µx) + (µ1 − µ0)Di + β
′
0xi + (β1 − β0)′Di

(
xi − µx

)
,

(11)

so we haveδ = β1 − β0, c = µ0 − β′0µx, β = β0. One can obtain flexibility by including

polynomials inxi that are linear in parameters forE[ϵDi |xi ].

• Regression discontinuity designwith a nonstochastic assignment rulef (si) of treatment:

an example is when we know the policy ruleDi
def
= f (si) for observablesi . This is a

special case of parametric method.

yi = c+ α f (si) + β
′xi + δ

′ f (si)(xi − x̄) + ei ,

Becausef (si) is a deterministic function, andsi is assumed to be orthogonal toei , hence

f (si) cannot be correlated with the error. A drawback is that any discrete changes in the

outcome which may be due to other causes are attributed to the change inf (si).
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• Nonparametricmethod:

AT E(x) =
n∑

i=1

µ̂1i(xi) − µ̂0i(xi)
n

.

with µD(xi ,eDi) being an unknown mean function to be estimated nonparametrically.

Imbens (2004) points that regression based method relies on extrapolation of the control

to get the counterfactual of the treated, thus there can be bias introduced in extrapola-

tion if the distribution (support) of covariates are different. To control for the bias, he

proposes to regressy01 on x0i andx̄1 − x0i to include the average bias termδ′(x̄1 − x̄0)

in construction of counterfactual.

µ0(xi ,e0i) = µ0
[
x0i, δ

′(x̄1 − x0i),e0i
]
.

One caution is that the means are not robust to outliers, thus ifx̄1 and x̄0 are very

different, the predicted bias term can be sensitive to its specification. One can use

kernel smoothing method, preferably with a local, not global, smoothing parameter,

in estimating the conditional mean to appropriately control for the limited overlap in

domain. However, one may have to cope with the dimensionality problem if the number

of covariates is relatively large, a feature that is common in nonparametric regression.

As a (parametric) substitute of nonparametric estimation, one can use a known func-

tion with reasonable flexibility inµD, e.g., a choice of low-order polynomials inxi ,

h(xi), e.g.,x2
1 + x1x2 + x2

2 + · · · . Then

µ̂Di = β̂
′
Dxi + γ̂

′
Dh(xi).

The reason for these estimators to be consistent is that, conditional onx, means ofyD

are independent ofD, thus can be omitted from the two separate regressions ofyDi on

xi .

• Angrist and Lavy (2004): Maimonides’ Rule (class size< 40) of Babylonian Talmud enforced in Israel
gives a deterministic rule of the class size as a function of number of potential students, and is likely to be
uncorrelated with any other variables that affect school outcomes such as test scores. For example, area 1
with 40 potential students will have 2 classes and area 0 with 39 has only one. Provided that the areas with
40 and 39 potential pool of students can be similar in other respect, it gives a good case for comparison. Thus
s1i = sarea 1= 40 for all i in area 1 (treated), ands0i = sarea 0= 39 for all i in area 0 (controls) andf (40) = 1
and f (39)= 0 is an indicator of treatment assignment in the class size experiment.

• Pitt and Khandker (1998): using the threshold of .5 acres as a deterministic eligibility (assignment) rule,
they estimate the effects of group-based credit programs. They compare the outcomes of eligible households
with ineligible households within the program village, conditional on other covariatesxi and village fixed-
effects that control for the placement endogeneity. Morduch (1999?) points that the .5 acre rule is not strictly
enforced by the officials, thus regression discontinuity design fails in practice. See Armendariz-Aghion and
Morduch (2005) for details.

• Ravallion and Wodon (2000) take community-level variables that central government use in allocating funds
as instruments for treatment of Food-For-Education (FFE) program in Bangladesh. This follows as the central
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government’s allocation should not be correlated with the household-level variables, simply because they can-
not observe them. This validates the use of central government allocation as instruments for household-level
treatment. This means that the authors assume the treatment eligibility (that the village is allocated funds) is
independent of any of household variables, as households cannot influence central government allocations.
This also implies an assumption of independence of outcomes and participation statuses of eligible/ineligible
households, conditional on village treatment eligibilityzi : after controlling for the fact that village is treated
or nontreated, the decision on schooling/work should not differ between households across villages. That is,
in the absence of this program, household behavior should be the same between the treated and the control
villages. The estimation technique they used is not LATE, but probit with endogenous and censored vari-
able. This is a generalization of Smith and Blundell (1986) and uses regression residuals of participation
equation as a regressor in probits of work and schooling. Their estimation employs a clever strategy, how-
ever, they include household-level variablesxi as explanatory variables in household’s FFE receipt equation,
FFEi = γFFEVi + η

′xi + vi , which can be correlated with household unobservables that bias estimates ofη̂

and residual ˆvi . The estimate ofγ may not be biased given eligibility is orthogonal to household-level factors.
Although this is possibly done out of necessity that one needs the household-level variability that predicts
household’s FFE receipt, it invalidates the exogeneity test they perform in probits of work/school, as it relies
on consistency of ˆvi . Variables included inxi are household demography, marital status, religion, education,
and land ownership. Some of those may be correlated with unobservable factors that influence FFE receipt,
such as ability of members.xi should be confined to household-level exogenous variables, such as sex ratios
(partly endogenous if there is a preference for balanced sex-ratio), land inheritance, and religion.

• Duflo (2001) also uses number of school primary construction in a district as the identification variable in
explaining the education outcomes, based on the assumption that it is implemented across the board and
is not correlated with individual-level variables. She compares education outcomes of cohorts prior to and
after school construction period, for high-intensity (many school construction) areas and low-intensity (fewer
school construction) areas, and found a significant increase in mean enrollment and mean wages for the
post-intervention cohorts, especially for the high-intensity areas.

IV.2 Matching Based Methods

Matching based methods choose the counterfactual from the opposite treatment group that is

close to the original reference observation. Closeness is determined by evaluating the distance

between covariatesx1i andx0i. Distance is computed with the choice of metric, e.g., Euclidean,

Mahalanobis, etc. Even with the same distance metric, matching estimators can differ in the

construction of counterfactual ˆµ0i. Once metric is chosen, researcher must decide on the num-

ber of matches for a given observation. Matches can be based on more than one counterfactual.

It is always the case that there is no exact match; then one can use the nearestm neighbours,

or can use the kernel estimator (smoothing over certain range ofxi) of the control fori, etc.

As noted earlier, kernel estimators have a problem of choosing the smoothing parameter, and

a potential bias if the distribution of covariates differ significantly. There is little result on the

optimal choice of metric, and is still under investigation (Imbens, 2004). The most popular

estimator is propensity score matching estimator, which we will turn next.

One should note that matching based on metric and on propensity score differ in weight-

ing on covariates. Propensity score matching estimator weights covariates according to the

propensity score regression function. This gives efficiency in estimation provided that propen-
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sity score estimates are consistent, in particular, exogeneity of covariates in selection equation,

e.g., absence of measurement errors, omitted variables, fixed effects, etc. If not, it introduces

bias. Thus metric-based matching estimators are more robust than propensity score matching

estimator to the failure of exogeneity assumption.

IV.3 Propensity Score Based Methods

A propensity scoreG is a probability of being treated. Usually, it is estimated using logit or

probit, by regressing treatment status on the set of covariatesxi , given asĜi = G
(
γ̂′xi

)
, where

G(·) is a logistic function for logit models and standard normal distribution function for probit

models. For multiple treatment choices, one can use multinomial logit models. The merit of

using the propensity score based methods is that one does not have to comparek-dimensional

aspects of individuals to construct the counterfactual as in other matching estimators, but only

one-dimensionalĜi (Rosenbaum and Rubin, 1983, see also the intuition given in Imbens,

2004). This may imply that the kitchen-sink regression of (11) may perform no worse than

the propensity score based method (Wooldridge, 2002), and moreover, the former is a one-

step procedure whereas the latter requires two-steps, losing efficiency. Another interpretation

of propensity score based methods is that controlling for the propensity score can be seen

analogously as controlling for the sampling weights in sampling theory. One controls for the

probability of being selected into treatment, and use matched counterfactual.

• An additional assumption: 0< Gi(xi) < 1 for all i (calledstrong ignorability of treat-

mentby Rosenbaum and Rubin, 1983). This is, in other words, there is a substantial

overlap in covariatesxi between the treated and the control, thus there is no point on

the support ofxi that only a single treatment status is observed. Then, Rosenbaum and

Rubin (1983) show that ATE is given by:

ÂT E(xi) = n−1
n∑

i=1

yi(Di − Ĝi)

Ĝi(1− Ĝi)

whereĜi is estimated propensity score of treatment. This follows from an application

of the expectation operator on

(D −G)y = (D −G)[(1 − D)y0 + Dy1] = Dy1 −G(1− D)y0 −GDy1.

Taking an expectation on the above conditional onx andD, which is allowed under the

conditional mean independence assumption, gives:

E[(D −G)y|D, x] = DE[y1|x] −G(1− D)E[y0|x] −GDE[y1|x].
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Then,taking an expectation overD, we have:

E[(D −G)y|x] = ED
[E[(D −G)y|D, x]| xi

]
,

= GE[y1|x] −G(1−G)E[y0|x] −G2E[y1|x],

= G(1−G) {E[y1|x] − E[y0|x]} .

So

E
[
(D −G)y
G(1−G)

∣∣∣∣∣ x] = E[y1|x] − E[y0|x] = AT E(x).

Note that:

Ex

[
E

[
Dy

G(x)

∣∣∣∣∣ x]] = Ex

[
E

[
Dy1

G(x)

∣∣∣∣∣ x]] = Ex

[
E[D|x]E[y1|x]

G(x)

]
,

= Ex

[
G(x)E [

y1| x
]

G(x)

]
= Ex

[E[y1|x]
]
= E[y1],

wherethe second equality holds becauseD y y|x. Similarly,

Ex

[
E

[
(1− D)y
1−G(x)

∣∣∣∣∣ x]] = Ex

[
E

[
(1− D)y0

1−G(x)

∣∣∣∣∣ x]] = Ex

[
(1− E[D|x])E [

y0| x
]

1−G(x)

]
,

= Ex

[
[1 −G(x)]E [

y0| x
]

1−G(x)

]
= Ex

[E[y0|x]
]
= E[y0].

ThusATE is given by:

AT E= E
[

Dy
G(x)

− (1− D)y
1−G(x)

]
,

andits sample analogue is:

ÂT E=
1
n

n∑
i=1

(
Diyi

G(xi)
− (1− Di)yi

1−G(xi)

)
,

=
1
n

n∑
i=1

(Di −Gi)yi

Gi(1−Gi)
,

which gives the Rosenbaum and Rubin (1983)’s estimator. This is a propensity score

weighted estimator: one uses the inverse of propensity score as weights to control for the

‘sampling’ probability. Hirano, Imbens, and Ridder (2003) use nonparametric estima-

tion of propensity score, namely, logistic power series, or the power series of covariates

to estimate the log odds ratio. They show that estimated parameter achieves the semi-

parametric efficiency bound of Hahn (1998). As this estimator has weights that do not

add up to 1, one reweights and:

ÂT E=
1
n

n∑
i=1

(ω1iyi − ω0iyi),
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where

ω1i =

Di

G(xi )
n∑

i=1

Di

G(xi )

, ω0i =

1−Di

1−G(xi )
n∑

i=1

1−Di

1−G(xi )

.

• Regression on propensity score.E[yi |Di = 1, xi ] − E[yi |Di = 0,xi ] is uncorrelated with

V[Di |xi ]:
yi = c+ αDi + βĜi + δDi(Ĝi − Ḡi) + ei .

This is, again, taking expectations onyi conditional onxi ,G(xi), while assuming linear

functions forE[y0|G(x)] andE[ϵDi |G(xi)]. Write

y = y0 + (µ1 − µ0)D + D(ϵ1 − ϵ0).

Taking expectations given fixedD,

E [
y|D,G(x)

]
= E[y0|G(x)] + (µ1 − µ0)D + D (E[ϵ1|G(x)] − E[ϵ0|G(x)]) .

Assume linearity:

E[y0|G(x)] = δ0 + δ1G(x), E[ϵD|G(x)] = δ̃D[G(x) − µG].

Then
E[y0|G(x)] + (µ1−µ0)D + D (E[ϵ1|G(x)] − E[ϵ0|G(x)])

= δ0 + (µ1 − µ0)D + δ1G(x) + δ2[G(x) − µG],
(12)

whereδ2 = δ̃1 − δ̃0. Thus the coefficient onD consistently estimates ATE.

• A simple (one-to-one)propensity score matching estimator:

ÂT E=
n1∑
i=1

û1i,Ĝi
− û0i,Ĝi

n1
.

Theprocedure is to estimate propensity scores and obtain predicted propensity scores

for all individuals, then, for a giveni in the treated, choose the individuals with the

closest propensity score aŝGi to form a pair inû1i,Ĝi
= y1i,Ĝi

− β̂′xi,Ĝi
= α̂ + ϵ̂1i,Ĝi

and û0i,Ĝi
= y01,Ĝi

− β̂′xi,Ĝi
= ϵ̂0i,Ĝi

. This follows since, under the conditional mean

independence assumption,

E[yDi |Di , xi ,G(xi)] = E[yDi |xi ,G(xi)] =

{
α + β′xi,Ĝi

β′xi,Ĝi

for Di =

{
1
0

There is an important caveat in the propensity score matching estimators that have been

pointed out by Abadie and Imbens (2006). Since there will not likely to be perfect matches

between the observedi and the counterfactualj over thek-dimensional vectorxi andx j , we

should expect a bias in matching. Under regularity conditions, the bias induced by imperfect

167



matchesis shown to be of orderOp(N−
1
k ), and in the case of ATE1, the bias will be of order

Op(N
− r

k

1 ) wherer > 1 is the relative (vis-a-visthe treated) speed of increase in the number

of controls used as the sample size increases.*11As the standard bootstrapped covariance esti-

mates may not be consistent (Abadie and Imbens, 2005), they provide a consistent covariance

matrix estimator. It is also shown that, the smaller the numberk of continuous covariates used

in propensity score estimation, less the bias in estimated treatment effects. This follows be-

cause the use of greater number of covariates introduces greater biasedness, while the discrete

covariates have a greater chance of having perfect matches. Also, the greater the number of

matches per observation (in ATE), or, the greater the number of controls (in ATE1), more ef-

ficient the estimates will be. This result poses a potentially serious problem in application.

One may want to estimate propensity score as efficiently as possible, so throwing in as many

covariates as possible. But Abadie and Imbens (2006)’s results tell us that it is likely that we

are increasing the bias. This is similar to efficiency-bias trade off by overfitting within data that

we see in forecasting.

• Jalan and Ravallion (2003) uses nearest 5 neighbours to the treated household/child i. Denoting the health of
treated childi ash1i, the estimated counterfactualĥ0i is given by:

ĥ0i =

5∑
j=1

Wi j h0i j ,

5∑
j=1

Wi j = 1.

Wi j is the weight obtained from other procedure. The nearest neighbor ofi is defined as the observationj of

the controls that minimizes the squared odds ratio difference
[

Ĝ(x1i)
1−Ĝ(x1i)

− Ĝ(x0 j )

1−Ĝ(x0 j )

]2
. The four closest toj are

easily found. Matches were only accepted if the squared odds ratio difference is less than 0.001 (an absolute
difference in odds less than 0.032). They used 2 levels of matching: villages and households. They used
nearest 5 neighbours for the household matching and nearest single neighbour for the village matching. They
discarded 62 out of 324 villages with piped water for no close match, 650 out of 9000 households with piped
water. The ATE estimator is given as:

ÂT E(xi ) =
n1∑
i=1

ωi

h1i −
5∑

j=1

Wi j h0i j

 = n1∑
i=1

ωi

(
h1i − ĥ0i

)
,

whereωi is sampling weight that sums to 1 in the case they oversampled some ofi (if it is pure random
sampling,ωi =

1
n1

for all i). They also incorporated other covariatesxi that may affect health. They first run
a regression (using only the controls to avoid any contamination from the treatment):

h0i = β
′
0x0i + u0i,

then estimate ATE as:

ÂT E=
n1∑
i=1

ωi

(h1i − β̂
′
0x1i

)
−

5∑
j=1

Wi j

(
h0i j − β̂

′
0x0i j

) = n1∑
i=1

ωi

(
h̃1i − h̃0i

)
,

where

h̃1i = h1i − β̂
′
0x̂1i, h̃0i =

5∑
j=1

Wi j

(
h0i j − β̂

′
0x0i j

)
.

*11 Precisely, it is
Nr

1
N0

a−→ θ ∈ [0,∞).
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• Heckman,Ichimura and Todd (1997) use local linear kernel weights inWi j that uses all observation in the
controls. Another popular weight which uses all observations in the control is the kernel of some density
function. Local linear matching is more efficient at the boundary points (propensity scores close to 0 or 1).

IV.4 Mixture of Methods

A simple yet promising approach is to use matching and regression. This will control for

the difference in the distribution of covariates. Suppose that, using some metric or propensity

score matching, one obtain a matched pair ofy0i andy1i. Since we observe the treated and the

counterfactual for it is extrapolated with the control, we get some imputed matched observation

y0i. Then, simple matching estimator is given byy1i−y0i = α+ei . Adding to it some difference

in covariates to control for the bias, we estimate:

y1i − y0i = α + β
′(x1i − x0i) + ei ,

wherex0i is matched treated covariates forx1i . While Imbens (2004) suggests usingx̄1, this

uses matchedx1i to gain efficiency (?). One can alternatively estimate

y0i = β
′x0i + ei ,

to obtain imputed mean ˆµ0(x1i) using treated group’s covariatesx1i and estimate:

AT E1(x) =
n1∑
i=1

(y1i − µ̂0(x1i)).

IV.5 Tests of Exogeneity

Imbens (2004) provides two tests of exogeneity (unconfoundedness). First is to test if the

ineligible and the opt-outs have the same characteristics for the outcomeyi :

yi y 1(zi = 1)|xi , ziDi = 0.

If the opt-outs have the different distributional features with the ineligibles, one cannot use the

opt-outs as the control. Eligibilityzi can be defined by availability of the social program. In

the above, conditioning onziDi = 0 which holds forDi = 0 with zi = 1 andzi = 0, one tests

whether being eligible (opt-outs) is statistically independent with the outcomeyi . A simple test

would be to regressyi on covariatesxi and eligibilityzi , and test if the coefficient on eligibility

is significantly different from zero. One can use higher moments or quantiles ofyi for further

examination.

The second test Imbens (2004) proposes is similar in spirit. It tests if the treatment effect

can be observed in lagged outcome, i.e., outcome prior to the intervention. If the treatment
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assignmentis exogenous, one should not logically expect any correlation between lagged out-

comes and treatment status. If the difference in treatment status significantly affects the lagged

outcome, then the exogeneity assumption is likely to be violated, because outcomes tend to be

serially correlated, i.e., cov[yit , yit−1] , 0. It tests:

yit−1 y Di |xit , yit−2, · · · yit−s, zi .

If the coefficient onDi is not significantly different from zero, it is plausible that unconfound-

edness is not violated. One can use, for example, a vector of proxy variablesyit−2, · · · yit−s

for lagged outcomes as a substitute. With a sufficient number of lags, power of the test can

be reasonably high. One needs, however, exchangeability and weak stationarity ini, s so the

conditional densityyit−1|yit−2, · · · yit−s does not depend oni, s. Stationarity can be tested with

other data sets. Another point to be noted that, although this test gives some insights, one can

use panel estimator if lagged covariatesxit−1 are available. So one can use this test to see if

DID rather than methods based on exogeneity is necessary to estimate ATE.

Another test of exogeneity is given by Heckman and Vytlacil (2005) in the context of IV

estimator. Note:

E[y|G(xi) = p] = E[y0 + D(AT E+ u1 − u0)|G(xi) = p],

= E[y0|G(xi) = p] + E [
DE[AT E+ u1 − u0|G(xi) = p,D = 1]|G(xi) = p

]
,

= E[y0|G(xi) = p] + pE[AT E+ u1 − u0|G(xi) = p,D = 1].

Thus withp > p′:

E[y|G(xi) = p] − E[y|G(xi) = p′]

= (p− p′)AT E+ pE[u1 − u0|G(xi) = p,D = 1] − p′E[u1 − u0|G(xi) = p′,D = 1],

or

E[y|G(xi) = p] − E[y|G(xi) = p′]
p− p′

= ATE

+
pE[u1 − u0|G(xi) = p,D = 1] − p′E[u1 − u0|G(xi) = p′,D = 1]

p− p′
.

HenceE[y|G(xi) = p] is nonlinear inp if E[u1 − u0|G(xi) = p,D = 1] is not uniform overp.

So one can visually inspect to see if linearity holds by plottingE[y|G(xi) = p] againstp.

V Bound-Based Methods

V.1 Bounding the Conditional Probability

When the exogenous eligibility assignment assumption does not hold, as often does not in

observational data, what should, or can, a researcher do? In the context of lacking the valid
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instrumentalvariables, a popular way in dealing with the failure of exogeneity (exclusion, if

in the IV context) assumption is to estimate as if the assumption holds, and verbally state the

direction of possible bias. But is this the best we can do?

Another way to deal with the failure of exogeneity is to bound the estimate. Under the

bounds analysis, Manski (1995), (1996) show that one cannot pin down the estimate to a single

number, but one can nevertheless bound the possible value of estimate. For example, note:

Pr[y0|x] = Pr[y0|x,D = 0] Pr[D = 0|x] + Pr[y0|x,D = 1] Pr[D = 1|x],

Pr[y1|x] = Pr[y1|x,D = 0] Pr[D = 0|x] + Pr[y1|x,D = 1] Pr[D = 1|x].

Let us focus ony0. Pr[y0|x,D = 1] is counterfactual distribution, thus cannot be observed.

Nevertheless, one knows the lower and upper bounds of it, namely, 0 and 1. Thus

Pr[y0|x,D = 0] Pr[D = 0|x] 6 Pr[y0|x] 6 Pr[y0|x,D = 0] Pr[D = 0|x] + Pr[D = 1|x].

Analogously, we have:

Pr[y1|x,D = 1] Pr[D = 1|x] 6 Pr[y1|x] 6 Pr[y1|x,D = 1] Pr[D = 1|x] + Pr[D = 0|x].

Then, Pr[y1|x] − Pr[y0|x] is bounded with:

Pr[y1|x,D = 0] Pr[D = 0|x] − (Pr[y0|x,D = 0] Pr[D = 0|x] + Pr[D = 1|x])

6 Pr[y1|x] − Pr[y0|x]

6 (Pr[y1|x,D = 0] Pr[D = 0|x] + Pr[D = 0|x]) − Pr[y0|x,D = 0] Pr[D = 0|x].
(13)

(13) is what Manski (1995) calls as the worst case scenario, because this is the widest bound

which must be satisfied for all binary treatment policies. The width of the bound is 1. Still, this

is better than the case without data where the bound can be anywhere between−1 and 1, or in

the width of 2. If the exogeneity assumption is suspicious and if we do not have instruments,

then we must base our analysis on (13) for credibility.

V.2 The Mixing Problem

An innovation of Manski (1995) is that he considers, under a binary treatment, the distribu-

tion of outcomesym under anarbitrary policy m, given the knowledge of Pr[y0|x] and Pr[y1|x].

This unspecified policy assigns individuals to treatment with an unspecified assignment rule

Dm. Thus:
ym ≡ Dmy1 + (1− Dm)y0.

The mixing problemManski considers is defined as: what can we know about Pr[ym|x] with

the knowledge of Pr[y0|x] and Pr[y1|x]?

It turns out that one can bound the probability of an arbitrary policyym that falls into some

outcome setB, or Pr[ym ∈ B|x]. Sinceym is a convex combination ofy1 and y0, we have
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(y1 ∈ B)∩ (y0 ∈ B) =⇒ ym ∈ B, and (y1 < B)∩ (y0 < B) =⇒ ym < B. These are the trivial cases

that give Pr[ym ∈ B|x] = 1 and Pr[ym ∈ B|x] = 0, respectively, and we do not have to worry

about them.

Instead, we consider the two polar cases. A treatment policy minimizes Pr[ym ∈ B|x] if the

assignment ruleDm follows:

(y1 < B) ∩ (y0 ∈ B) =⇒ Dm = 1,

(y1 ∈ B) ∩ (y0 < B) =⇒ Dm = 0.
(14)

Then the smallest possible value of Pr[ym ∈ B|x] when it is minimized by policy is

Pr
[
(y1 ∈ B) ∩ (y0 ∈ B)|x]. Another treatment policy maximizes Pr[ym ∈ B|x] if the assignment

rule Dm follows:
(y1 < B) ∩ (y0 ∈ B) =⇒ Dm = 0,

(y1 ∈ B) ∩ (y0 < B) =⇒ Dm = 1.
(15)

Then the largest possible value of Pr[ym ∈ B|x] when it is maximized by policy is

Pr
[
(y1 ∈ B) ∪ (y0 ∈ B)|x]. So:

Pr
[
(y1 ∈ B) ∩ (y0 ∈ B)|x] 6 Pr[ym ∈ B|x] 6 Pr

[
(y1 ∈ B) ∪ (y0 ∈ B)|x] .

Unfortunately, we do not know these bounding values, so the lower bound must be substituted

with the smallest possible value that is consistent with the marginals Pr[y0|x] and Pr[y1|x], and

so does the upper bound which has to be replaced with the largest possible value consistent

with Pr[y0|x] and Pr[y1|x].

The lower bound is given by rearranging

Pr
[
(y1 ∈ B) ∪ (y0 ∈ B)|x] = Pr[y1 ∈ B|x] + Pr[y0 ∈ B|x] − Pr

[
(y1 ∈ B) ∩ (y0 ∈ B)|x] 6 1,

or
Pr

[
(y1 ∈ B) ∩ (y0 ∈ B)|x] > max

{
Pr

[
y1 ∈ B|x] + Pr

[
y0 ∈ B|x] − 1,0

}
,

where the maximum operator is necessary because Pr
[
y1 ∈ B|x]+Pr

[
y0 ∈ B|x] can be less than

1. The largest possible value for the upper bound is given when there is no overlap betweeny1

andy0 overB, so Pr[y1 ∈ B|x] + Pr[y0 ∈ B|x]. Then:

max
{
Pr

[
y1 ∈ B|x] + Pr

[
y0 ∈ B|x] − 1,0

}
6 Pr[ym ∈ B|x]

6 Pr[y1 ∈ B|x] + Pr[y0 ∈ B|x].

(16)

This is the worst case bound in the mixing problem. It can be seen that if Pr[y1 ∈ B|x]+Pr[y0 ∈
B|x] < 1, the width of bound is smaller than 1. When we compare it with the width of 1 in

(13), we see that knowledge of the marginals provides the possibility of narrowing the width.

The improvment will be greater for the setB such that Pr[y1 ∈ B|x] + Pr[y0 ∈ B|x] is smaller.
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Contingency Table of Heckman and Smith (1995)
untreated

y0 = 1 y0 = 0

t
r
e
a t
e
d y1 = 1 Pr[y1 = 1, y0 = 1] Pr[y1 = 1, y0 = 0] Pr[y1 = 1]

y1 = 0 Pr[y1 = 0, y0 = 1] Pr[y1 = 0, y0 = 0] Pr[y1 = 0]

Pr[y0 = 1] Pr[y0 = 0]

A binary outcome example of Manski (1997) givesE[y1] = Pr[y1 = 1] = 0.67 andE[y0] = Pr[y0 = 1] = 0.49.
An outcome is graduation, denoted withy = 1 if graduated andy = 0 otherwise.y1 indicates the outcome under
treatment andy0 the outcome under no treatment. Then, what is the contribution of program ony? Or what are the joint
probabilities Pr[y0, y1]? There is an infinite number of combinations that are consistent withE[y1] = Pr[y1 = 1] = 0.67
andE[y0] = Pr[y0 = 1] = 0.49. There are several possibilities:

• Widest bound (Hoeffding-Frechet bounds). If treatment is assigned to attain the highest feasible graduation
rate that it is assigned only to individuals withy1 = 1, y0 = 0, and no treatment is given to individuals
with y1 = 0, y0 = 1 or y1 = 0, y0 = 0, then graduation probability is 1− Pr[y1 = 0, y0 = 0]. Conversely,
if the program is to achieve the lowest feasible graduation rate that it gives treatment to individuals with
y1 = 0, y0 = 1, and no treatment is given to individuals withy1 = 1, y0 = 0, then graduation probability is
Pr[y1 = 1, y0 = 1]. Then we want the bounds that minimize both Pr[y1 = 0, y0 = 0] and Pr[y1 = 1, y0 = 1] to
get the widest bound. This follows because the upperbound is given by 1− Pr[y1 = 0, y0 = 0] and the lower
bound is given by Pr[y1 = 1, y0 = 1], so minimizing Pr[y1 = 0, y0 = 0] and Pr[y1 = 1, y0 = 1] gives the most
conservative (or widest) bounds on graduation probability Pr[y= 1]. Thus

Pr[y1 = 0, y0 = 0] = 0 Pr[y1 = 0, y0 = 1] = .33

Pr[y1 = 1, y0 = 0] = .51 Pr[y1 = 1, y0 = 1] = .16

are the joint probability distribution. So the highest graduation rate consistent with experimental evidence is
1 and the lowest is.16, or [.16,1].

• If treatment does not harm graduation, or Pr[y1 = 0, y0 = 1] = 0, then

Pr[y1 = 0] = Pr[y1 = 0, y0 = 0] + Pr[y1 = 0, y0 = 1] = Pr[y1 = 0, y0 = 0] = .33,

and
Pr[y0 = 1] = Pr[y1 = 0, y0 = 1] + Pr[y1 = 1, y0 = 1] = .49.

Then Pr[y1 = 1] is .67 so the interval is [.49, .67].
• If yD are independent,

Pr[y1 = 0, y0 = 0] = Pr[y1 = 0] Pr[y0 = 0] = .17,

Pr[y1 = 1, y0 = 1] = Pr[y1 = 1] Pr[y0 = 1] = .33.

The bounds on Pr[y = 1] is [.33, .83].

The widest bound seems too large, however, this is the bound that is consistent with the widest credibility. The widest

bound can be narrowed if we add more assumptions. �

As seen in the example above, one can consider a variety of restrictions to narrow the worst

case bounds in (16). An interesting restriction among them is the case when we know the

control proportion Pr[Dm = 0|x] = p. Then:

Pr[yD] = Pr[yD|Dm = 1](1− p)+ Pr[yD|Dm = 0]p.

This may not be realistic because it is almost impossible to predictp. But it will be helpful in

the policy debate if we can see what bound will be obtained for different values ofp.
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LettingΨ bethe set of all possible distributions onY, andψ be its element, then:

Pr[y1|Dm = 1] ∈ Ψ1(p) ≡ Ψ ∪
{

Pr[y1] − pψ
1− p

: ψ ∈ Ψ
}
, (17)

and

Pr[y0|Dm = 0] ∈ Ψ0(p) ≡ Ψ ∪
{

Pr[y0] − (1− p)ψ
p

: ψ ∈ Ψ
}
. (18)

Given thatψ ∈ [0,1], we immediately have the bound on each probability:

max

{
0,

Pr[y1 ∈ B] − p
1− p

}
6 Pr[y1 ∈ B|Dm = 1] 6 min

{
1,

Pr[y1 ∈ B]
1− p

}
, (19)

and

max

{
0,

Pr[y0 ∈ B] − (1− p)
p

}
6 Pr[y0 ∈ B|Dm = 1] 6 min

{
1,

Pr[y0 ∈ B]
p

}
. (20)

Sincedistribution ofym is (1− p, p) mixture of Pr[y1|Dm = 1],Pr[y0|Dm = 0], we have:

Pr[ym] ∈ {(1− p)ψ1 + pψ0 : (ψ1, ψ0) ∈ Ψ1(p)× Ψ0(p)} . (21)

Thus, combining (19), (20), (21), we have:

max{0,Pr[y1 ∈ B] − p} +max{0,Pr[y0 ∈ B] − (1− p)}
6 Pr[ym ∈ B]

6 min {1− p,Pr[y1 ∈ B]} +min {p,Pr[y0 ∈ B]} .
(22)

The maximum of lower bound is Pr[y1 ∈ B] + Pr[y0 ∈ B] − 1, but can take the intermediate

values of Pr[y1 ∈ B] − p or Pr[y0 ∈ B] − (1− p). The minimum of the upper bound is lowered

if 1 − p > Pr[y1 ∈ B] or p > Pr[y0 ∈ B]. Thus the knowledge ofp provides a possibility of

narrowing the bound in (16).

It should be noted that, despite its usefulness, we may not be able to use (16) nor (22)

because experiments may only offer an ITT estimator, not the marginals. Then one must base

the analysis on (13) which has the regrettably large width of 1. Another thing to note is that,

despite being critical on randomized experiments, the mixing problem needs the marginals

hence the perfectly conducted randomized experiments. So it should not be understood that

the use of (16) or (22) can serve as a substitute to a randomized experiment, but rather it shows

another way of utilizing the experimental evidence.

VI Instrumental Variables Based Methods

The instrumental variable estimator, or thelocal average treatment effect (LATE), is an ATE

for the population whose participation eligibility is changed from 0 to 1 (and among them,

from a nonparticipant status to a participant status). The key assumption is that the change in
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statusis induced only by the change in eligibility from 0 to 1, not by any other variables, and

such a change is orthogonal to (or independent of) any factors that affect outcomes.*12

Assumption: eligibilityzi of participation is randomly assigned.

(y1i, y0i,D1i,D0i) y zi ,

or equivalently,
yDi ,Di(zi) y zi .

This means that eligibility is assigned independent of the possible outcomesy1i, y0i, nor the

likely responsesD1i, D0i of individuals to the assigned valuezi . Conditional mean indepen-

dence ofyDi andDi givenxi is not necessary. Under this setting, an authority randomly assigns

each individuals the eligibilityz to participate in the program, and the individuals who are

eligible z = 1 decide on participationD1i . D1i is participation status if the person is eligible

zi = 1, D0i is the participation status of the ineligible personzi = 0. We naturally expect

D0i = 0 andD1i = 1, nevertheless, there can be sometargeting errorsthat:

• Type 1 error (exclusion error): eligible individuals do not participate,D1i = 0.

• Type 2 error (leakage error*13): ineligible individuals participate,D0i = 1.

In the case of type 1 error, one may not want to call it an error given that the individuals

voluntarily opt out. But in the context of poverty reduction, an eligible individual is a low

income individual, and the scheme which prompts them to opt out can be considered as having

targeting errors. To summarize, there can be four cases as inTable 1.

VI.1 Instrumental Variable Estimator under Homogeneous Treatment Ef-

fects

The most popular IV-based estimator is the Wald estimator:

L̂AT E=
ȳzi=1 − ȳzi=0

D̄1 − D̄0
.

In the example ofTable 1, LAT E= 1600−1300
.8−.2 = 500.

Noting
yi = {1− D(zi)}y0i + D(zi)y1i,

*12 Theformer is called relevancy and the latter is called validity of instrumentz for D. See below.
*13 Should be better termed as an inclusion error.
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Table 1: Eligibility and Actual Participation Status

Classification of Treatment and Eligibility Statuses

treatment

D = 0 D = 1 Dz

e
li
g
ib
il
it
y

z= 0 not targeted leakage
(type 2 error) D0i

z= 1 exclusion
(type 1 error) targeted and complied D1i

yD y0 y1

A Numerical Example

treatment

D = 0 D = 1 D̄z ȳz

e
li
g
ib
il
it
y

z= 0 80 20 0.20 1300

z= 1 50 200 0.80 1600

ȳD 1200 1800

wehave

E[yi |zi = z] − E[yi |zi = z′]

= E [{1− D(z)}y0i + D(z)y1i|zi = z
] − E [{1− D(z′)}y0i + D(z′)y1i|zi = z′

]
,

= E [{1− D(z)}y0i + D(z)y1i
] − E [{1− D(z′)}y0i + D(z′)y1i

]
,

= E [{D(z)− D(z′)}(y1i − y0i)
]
,

(23)

where the second to last line follows from the assumption thatyDi ,Di(zi) y zi .*14 Thence

E[yi |zi = z] − E[yi |zi = z′] = E[y1i − y0i |D(z)− D(z′) = 1] Pr[D(z)− D(z′) = 1]

+ E[y1i − y0i|D(z) − D(z′) = −1] Pr[D(z) − D(z′) = −1].

*14 Wooldridge’s derivation uses:

Di = 1(zi = z)D(z)+ {1− 1(zi = z)}D(z′) = D(z′) + 1(zi = z){D(z)− D(z′)}.

Plugging inyi = y0i + Di (y1i − y0i), we have:

yi = y0i + [D(z′) + 1(zi = z){D(z)− D(z′)}](y1i − y0i),

= y0i + D(z′)(y1i − y0i ) + 1(zi = z){D(z)− D(z′)}(y1i − y0i).

Taking expectations conditional onzi = z (meaning, withzi = z imposed), we have:

E [
yi |zi = z

]
= E [

y0i |zi = z
]
+ E [

D(z′)(y1i − y0i)|zi = z
]
+ E [{D(z)− D(z′)}(y1i − y0i)|zi = z

]
,

= E [
y0i

]
+ E [

D(z′)(y1i − y0i )
]
+ E [{D(z)− D(z′)}(y1i − y0i)

]
,

where the last equality follows becauseD(zi ), yDi y zi . Taking expectations conditional onzi = z′, we have:

E [
yi |zi = z′

]
= E

[
y0i |zi = z′

]
+ E [

D(z′)(y1i − y0i)|zi = z′
]
,

= E
[
y0i

]
+ E [

D(z′)(y1i − y0i)
]
.

Then we will get (23):

E [
yi |zi = z

] − E [
yi |zi = z′

]
= E [{D(z)− D(z′)}(y1i − y0i)

]
.

176



Figure 3: A Graphical Illustration of Wald Estimator
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The next assumption we use is calledmonotonicity:

D1i > D0i , (24)

meaning, ifi participated when not eligible,i participates when eligible. This is termed as

‘monotonicity’ by Imbens and Angrist (1994) becauseD is monotonic inz for anyi, which can

also be termed asuniformity(Heckman and Vytlacil, 2006) as it precludes the noncompliance

that eligibility decreases the likelihood of participation (or vice versa that ineligibility increases

the participation). Note that this implies, by lettingz= 1, z′ = 0:{ zi = 0, Di = 1 (leakage) ; zi = 1, Di = 0 (exclusion),

zi = 1, Di = 0 (exclusion) ; zi = 0, Di = 1 (leakage).

Thus exclusionzi = 1,Di = 0 must not happen for individuals with experiencing leakage

zi = 0,Di = 1, and vice versa. IV estimator allows targeting errors, but the same individual

cannot experience both types of targeting errors upon changes inzi . Plausibility of such an

assumption cannot be tested.
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Undermonotonicity,D(z)− D(z′) > 0 thenD(z) − D(z′) = 1 if D(z) = 1,D(z′) = 0. So:

Pr[D(z) − D(z′) = 1] = Pr[D(z)= 1,D(z′) = 0] = Pr[D = 1|zi = z]+ Pr[D = 0|zi = z′]

= Pr[D = 1|zi = z]− Pr[D = 1|zi = z′].

Thus we have:

E[y1i − y0i|D(z) − D(z′) = 1] =
E[yi |zi = z] − E[yi |zi = z′]

Pr[D = 1|zi = z] − Pr[D = 1|zi = z′]
(25)

(25) shows that LHS depends on the particular values ofzi , therefore nor does the RHS. Heck-

man (1997) argues that, given that it depends on the particular values ofzi and is ATE of

unknown subpopulation, LATE does not give an answer to an interesting policy question. Al-

though his exposition is correct, one can always check the characteristics of subpopulation

whose choices are affected by the value ofzi , and it gives the net effect on the economy of

certain intervention. This is still an interesting question being answered.

Then:

E [
yi |zi

]
= E [

y0i|zi
]
+ E [

D(zi)(y1i − y0i)|zi
]
+ ziE

[{D(z)− D(z′)}(y1i − y0i)|zi
]
,

= E [
y0i

]
+ E [

D(zi)(y1i − y0i)
]
+ ziE

[{D(z)− D(z′)}(y1i − y0i)
]
,

becauseyDi ,D(zi) y zi . Then, taking differences:

E [
yi |zi = z

] − E [
yi |zi = z′

]
= (z− z′)E [{D(z)− D(z′)}(y1i − y0i)

]
. (26)

It will be clear that LATE derived in this fashion relies on particular values ofzi . Expanding

the expectations,

E [{D(z)− D(z′)}(y1i − y0i)
]
= E [

y1i − y0i|D(z) − D(z′) = 1
]
Pr[D(z) − D(z′) = 1],

as we assume monotonicity. Noting that Pr[D(z) − D(z′) = 1] = Pr[D = 1|zi = z] − Pr[D =

1|zi = z′], we have:

E [
y1i − y0i|Di(z)− Di(z

′) = 1
]
=

1
z− z′

E [
yi |zi = z

] − E [
yi |zi = z′

]
Pr[D = 1|zi = z]− Pr[D = 1|zi = z′]

, (27)

(27) is sometimes called theWald estimator. It is the same as (25) withz− z′ = 1. Note that

the Wald estimator only exploits the variation induced by changes inz, D|z, that are random by

assumption, which ensures zero correlation betweenD|z with unobservables. So it is ATE of

unknown subpopulation whose choice is changed by variation in IV. It is also noteworthy that

LATE is a function of particularzi value by construction, even after dividing it withz−z′. This

is in contrast with the IV estimator which is not a function ofzi as we will examine below.

Consider an instrumental variables estimator onDi :

yi = c+ αDi + ei ,
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An instrumental variable estimator using eligibilityzi as an instrument for participation gives:

α̂IV = (d′z)−1y′z =

n∑
i=1

(yi − ȳ)(zi − z̄)

n∑
i=1

(Di − D̄)(zi − z̄)
,

whered = (D1i, · · · ,Dn)′, z = (z1, · · · , zn)′, y = (y1, · · · , yn)′. In the population moment terms,

αIV =
cov[y, z]
cov[D, z]

= α
cov[D, z]
cov[D, z]

+
cov[e,z]
cov[D, z]

= α,

if
cov[e,z] = 0,

which is called thevalidity requirement of an instrumental variable, while another requirement

cov[D, z] , 0,

is called therelevancyrequirement.

Although the IV estimator is attractive due to its ability to give the unbiased ATE estimate

under weak assumptions, there are at least two drawbacks. First is that it measures the av-

erage treatment effects of undefined subpopulation. It is ATE of subpopulation, or marginal

population, whose choices were changed due to changes in eligibility. If it is the school meals

program, it is the marginal households in the sense that they have undernourished children who

will change their schooling choices due to school meals. It is not likely to be the ATE, or the

treatment effect averaged over the entire population. However, this may not be a weakness if

we want to know the effects on the subpopulation who have undernourished children in their

home, or the subpopulation who are in need of public assistance to have their children stay in

schools. In addition, they can always compare the characteristics of marginal population with

others to see on which population the policy is working. The second drawback is that we can

rarely find the valid IVs. So most often we opt to randomize the eligibility,*15 which then is

subjected to the same operational criticisms for randomized trials. One may wish to compare

randomized estimator and IV estimator and see how the estimates change. These should be-

come closer to each other if the share of so-called ‘unknown subpopulation’ becomes larger.

Oreopoulos (2006) shows the UK and Northern Irish case study on the effects of compulsory

schooling law where a significant portion of population was affected by such legislation. The

estimated marginal returns to schooling is similar to the US estimates of Angrist and Krueger

(1990) where only a small fraction of population was affected.

*15 Most researchers use randomized eligibility for instruments. See Bitler, Gelbach, and Hoynes (2006) who use
data of Connecticut’s Jobs First program, and Abadie, Angrist, and Imbens (2002) who use JTPA data.
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• Angrist (1990) uses the Vietnam War draft lottery numbers as randomly assigned eligibility for military ser-
vice, which assigns the service to individuals with low lottery numbers, and estimates its effect on subsequent
incomes. They found the veteran status to affect negatively their incomes.

• Angrist and Krueger (1990) use birth date as eligibility: in some US states, one cannot drop out if he/she
is below 16 in August 30. So students born in September 1st and August 30 has a difference of 1 year of
compulsory education, whose assignment should be random given the birth dates are random. They divided
birth dates into 4 quarters, and compared with the first (beginning from Sep 1) and the last three quarters
using Wald estimates. They found LATE to be significantly positive.

• Angrist et al. (2002) use randomized voucher assignment as instruments for using the vouchers, as only
90% of households used them. They found significant increase in grade attainment, test scores, likelihood of
finishing 8th grade, and a reduction in grade repetitions.

• Banerjee et al. (2005) use Wald estimator for the effects of remedial education on test scores. Randomization
at the school level for getting remedial education teachers. They find significant improvement on scores,
especially for underachievers, and significant cost-effectiveness over other interventions.

VI.2 Instrumental Variable Estimator under Essential Heterogeneity

Heckman (1997), Heckman and Vytlacil (2005), (2006), and other Heckman papers show

an important result that LATE and IV estimators are valid only when the treatment effect is the

same for all individuals, or when the individuals do not take into account the treatment effects

when participating. This is seen by introducing theessential heterogeneitythat for different

individuals, treatment effectαi is generally different:

yi = c+ µi(xi) + αiDi + ei , (28)

We assume a separable (between mean and disturbance) model:

y0i = µ0(xi) + u0i , y1i = µ1(xi) + u1i,

so
y1i − y0i = µ1(xi) − µ0(xi) + u1i − u0i = α + u1i − u0i,

whereα = µ1(xi) − µ0(xi) is ATE. Plugging this into

yi = y0i + (y1i − y0i)Di ,

gives (28):

yi = µ0(xi) + (α + u1i − u0i)Di + u0i = µ0(xi) + αDi + u0i + (u1i − u0i)Di .

where we denotedµ0(xi) = c+ µ(x̃i) (with x̃i does not include intercept) andu0i = ei . So the

coefficientαi on Di is:
αi = α + u1i − u0i .

As can be seen, the treatment effect model under essential heterogeneity can be cast in a ran-

dom coefficient framework. It can also be cast in the fixed-effect framework, if the perceived
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individual gain from participationu1i − u0i is a function of the unobserved individual fixed

effectci .

In the population moment terms, IV estimator of ATE gives:

αIV =
cov[yi , zi ]
cov[Di , zi ]

=
cov[αDi , zi ]
cov[Di , zi ]

+
cov[u0i + (u1i − u0i)Di , zi ]

cov[Di , zi ]
,

= α +
cov[(u1i − u0i)Di , zi ]

cov[Di , zi ]
.

So consistency of IV estimator rests oncov[(u1i−u0i)Di ,zi ]
cov[Di ,zi ]

= 0, or that (u1i−u0i)Di is not a function

of zi . Denoting the individual gain as∆ui ≡ u1i − u0i , the denominator can be rewritten as:

cov[∆uiDi , zi ] = E[∆uiDizi ] − E[∆uiDi ]E[zi ],

= Ez [E[∆uiDi |zi ]zi ] − E[∆uit Di ]E[zi ],

= Ez [E[∆uiDi |zi ]zi ] − Ez [E[∆uit Di |zi ]] E[zi ].

This can be zero ifE[∆uiDi |zi ] = E[∆uiDi ] by the second line, or ifE[∆uiDi |zi ] = 0 by the third

line. SinceE[∆uiDi |zi ] = E[∆uiDi(zi)|zi ], we should more likely to see stronger correlation

between individual benefit∆ui = u1i − u0i and participation underzi = z, which is consistent

with our assumption of monotonicity thatDi(z) > Di(z′). So the first condition should not

hold. The second condition also does not hold ifE[∆ui |Di , zi ] , 0 because:

E[∆uiDi |zi ] = ED|z
[E∆u|D,z[∆ui |Di , zi ]Di |zi

]
.

Heckman (1997) argues that it is unlikely thatE[∆ui |Di , zi ] = 0, given individuals make par-

ticipation decisions based on individual gains. Condition thatE[∆ui |Di , zi ] , 0 is highly plau-

sible, and under this, we should have cov[(u1i − u0i)Di , zi ] , 0. This covariance will be zero if

∆ui y Di |zi , or weakerE [∆ui |Di , zi ] = E [∆ui |zi ] suffices. The latter is analogous to the ‘ignor-

ability of treatment’ and ‘selection on observables’ only thatzi plays the role of covariatesxi

in exogenous treatment assignment case.

So it is crucial thatE [∆ui |Di , zi ] = E [∆ui |zi ] for an IV estimator to be consistent under

essential heterogeneity. Yet another way of describing how this condition means, or to under-

stand the consistency requirement of IV estimator, is to note thatyDi = µD(xi) + uDi where

µD(xi) is a function only ofxi :

E[y1i − y0i|xi , zi ,Di = 1], = µ1(xi) − µ0(xi) + E[u1i − u0i|xi , zi ,Di = 1].

As argued, Heckman (1997) points that the third term would not be zero. He shows that the

conditional density of∆ui givenxi , zi , andDi , f (∆ui |xi , zi ,Di = 1), which we use in computing

E [∆ui |xi , zi ,Di = 1], will be dependent onDi . UsingD∗ as a latent index variable for program
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participationsuch thatD = 1 iff D∗ > 0, and suppressingxi for notational simplicity, we have:

Pr[Di = 1|zi ,∆ui ] f (∆ui |zi) f (zi) =
∫

1(D∗ > 0) f (D∗|zi ,∆ui) f (∆ui |zi) f (zi)dD∗,

=

∫
1(D∗ > 0) f (D∗, zi ,∆ui)dD∗,

=

∫
1(D∗ > 0) f (∆ui |D∗, zi) f (D∗|zi) f (zi)dD∗,

=

∫ ∞

0
f (∆ui |D = 1,zi) f (zi) f (D∗|zi)dD∗,

= f (∆ui |D = 1, zi) f (zi)
∫ ∞

0
f (D∗|zi)dD∗,

= f (∆ui |Di = 1,zi) f (zi) Pr[Di = 1|zi ].

Third to the last equality follows becauseD = 1 for D∗ > 0, so we can condition onD = 1. By

the Bayes’ rule,

f (∆ui |zi ,Di = 1) =
Pr[Di = 1|zi ,∆ui ] f (∆ui |zi)

Pr[Di = 1|zi ]
. (29)

Thus for f (∆ui |zi ,Di = 1) = f (∆ui |zi), we need:

Pr[Di = 1|zi ,∆ui ] = Pr[Di = 1|zi ].

Only under this case, an IV estimator gives a consistent ATE estimate. This is unlikely to hold

since individuals make participation decisions based on the individual gains∆ui .*16 Heckman

(1997, 449) points out that zero correlation between∆ui andDi is ‘a behavioral assumption’,

and thus ‘cannot be settled by a statistical analysis.’

Heckman and Vytlacil (2005) show that the LATE estimator is a weighted average of what

they call themarginal treatment effect, which is a treatment effect conditioned onG = p, which

is given by:
MT E

def
= E[y1 − y0|uD = p] = ∂ε[y|G(D=1|z)=p]

∂p .

Notethat this is a differential version (limit case by differentiating from the right) of Wald es-

timator evaluated atp. This is derived as follows. Assume a latent variableD∗ that determines

the participation:

D∗ = µD(z) − v

{
>
<

0 ⇐⇒ D =

{
1,
0.

*16 IV validity does not hold generally evenf (∆ui |zi ) = f (∆ui ), unless another condition holds: Pr[Di = 1|zi ,∆ui ] =
Pr[Di = 1|zi ] or Di is independent of∆ui conditional onzi or Di y ∆ui |zi . (29) shows that even if the
instrument validity holds for the marginal densityf (∆ui |zi ) = f (∆ui ), the density of∆ui conditioned onDi and
zi , f (∆ui |zi ,Di = 1), still generally is a function of, hence correlated with,Di :

Pr[Di = 1|zi ,∆ui ] f (∆ui )
Pr[Di = 1|zi ]

= f (∆ui |zi ,Di = 1).
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We have assumed a separability between regressors and disturbance term in the above. The

above inequality can be rewritten by using the distribution functionFV, a monotonic transfor-

mation, as:

µD(Z) > V ⇐⇒ FV[µD(Z)] > FV(V) ⇐⇒ G(Z) > UD,

where we denotedG(Z) = FV[µD(Z)] andUD = FV(V). Note by constructionUD
d∼ U[0,1].

E[y|Z = z] = E[y|G(Z) = p],

= E[Dy1 + (1− D)y0|G(Z) = p],

= E[y0] + E[D(y1 − y0)|G(Z) = p],

= E[y0] + pE[y1 − y0|D = 1],

= E[y0] +
∫ p

0
E[y1 − y0|UD = uD]duD.

So
∂ε[y|G(D=1|z)=p]

∂p = E[y1 − y0|UD = p].

They show that LATE estimator is a weighted average of MTE:

αIV =

∫ 1

0
ω(x,uD)MT E(x, uD)duD,

with

ω(x,uD) =
E [ J(Z) − E[J(Z)]| X = x,G(Z) > uD] Pr [G(Z) > uD| X = x]

cov [ J(Z),G(Z)| X = x]
,

=

∫
( j − E [J(Z)|X = x])

∫ 1

uD
fG,J(g, j|X = x)dgd j

cov [ J(Z),G(Z)| X = x]
,

=

∫ [∫ 1

uD
fG|J(g|J(Z) = j, X = x)dg

]
( j − E [J(Z)|X = x]) fJ( j|X = x)d j

cov [ J(Z),G(Z)| X = x]
,

=

∫
Pr

[
G(Z) > uD| J(Z) = j, X = x

]
( j − E [J(Z)|X = x]) fJ( j|X = x)d j

cov [ J(Z),G(Z)| X = x]
,

They also show that ATE is another form of weighted average of MTE. Weights used in LATE

are generally different from those used in ATE, so they discredit LATE as not being meaningful

for a treatment effect parameter. They argue that LATE is only meaningful for policy effect

parameter which measures theneteffect of the policy, rather than thegrosseffect such as the

treatment effect. They also show that the weights used in LATE estimator, although sum to

1, are negative at someuD if J(Z), any function constructed with a vector of IVsZ that is

used for IV estimation, is nonmonotonic in (or being negatively correlated with) propensity

score: if the probability Pr
[
G(Z) > uD| J(Z) = j, X = x

]
is negatively correlated withJ(Z) for

a certain value ofuD, the numerator ofω(x,uD) becomes negative. This happens if there is

183



essentialheterogeneity in participation that people may enter or exit the program to a given

change inZ.*17 One thus needsuniformity (or ‘monotonicity’ in Imbens and Angrist (1994)

sense) in propensity score that a greater value ofJ(Z) leads to a greater propensity scoreG(Z)

for everyone. If the propensity score is used as instrumentsJ(Z) = G(Z), then all the weights

will be positive.

The issue that instrumental variables give an aggregate of different estimates of different

subpopulation was well recognized, because it was pointed out by Heckman and Robb (1985),

(1986). A similar, yet not using MTE, result is found in Imbens and Angrist (1994, Theorem

2). An analogous proposition has been derived ahead of time by Angrist, Graddy, and Imbens

(2000, Theorem 1, 2) in a continuous treatment intensityD ∈ R+ case that shows an IV

estimator in simultaneous equations models is a weighted average of MTEs (although they

do not use the term ‘MTE’).

αzk , zl

IV =

∫ ∞

0
E

[
∂y(D, Z)

∂D̃

∣∣∣∣∣ D(zk) 6 D̃ 6 D(zl)

]
ω(D̃)dD̃,

=

∫ D(zl )

D(zk)
ω(D̃)MT E(D̃, Z)dD̃,

with the weights being given by the ratio of probability of particular treatment intensityD̃ to

the total sum of probability over entire support of treatment intensity, or:

ω(D̃) =
Pr[D(zk) 6 D̃ 6 D(zl)]∫ ∞

0
Pr[D(zk) 6 r 6 D(zl)]dr

=
Pr[D(zk) 6 D̃ 6 D(zl)]∫ D(zl )

D(zk)
Pr[D(zk) 6 r 6 D(zl)]dr

,

wherezk andzl are indexed asD(zk) 6 D(zl) with k , l. Angrist, Graddy, and Imbens (2000,

Theorem 2) also notes that, under many instrument values{z1, · · · , zK},

αzk , zk+1

IV =

K−1∑
k=1

λk+1α
zk , zk+1

IV

with weights

λk+1 =

[
G(zk+1) −G(zk)

]∑K
l=k fz(zl)

[
J(zl) − ε[J(Z)]

]
∑K−1

m=1
[
G(zm+1) −G(zm)

]∑K
l=m fz(zl)

[
J(zl) − ε[J(Z)]

] ,
where fz(Z) is the probability mass function ofZ. λk+1 can be negative if the order of instru-

mentszk, zl are such that, for somezk andzk+1, J(Z) andG(Z) are nonmonotonic. This weight

is discrete version of Heckman and Vytlacil (2005)’s weight and the condition for nonnega-

tivity is exactly the same. However, what the IV estimate averages over is IV estimates of

subpopulation, not MTEs as in Heckman and Vytlacil (2005).

*17 Thisalso happens even under treatment effect homogeneity when participation decision is nonseparable in IVs
and disturbanceD∗ = µD(Z,V).
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Figure 4: A Graphical Illustration of Quantile Treatment Estimator
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Given both sides recognize the problem from the beginning, it seems as if the controversy

is taking too much toll in terms of excessive arguments, and it might have become a source

of confusion. They are pretty much in accord that IV estimator is of limited usefulness when

there is essential heterogeneity. Chamberlain (1986), Heckman and Robb (1985), (1986), Im-

bens and Angrist (1994), among others, all point to the fact that IV is not suited under essential

heterogeneity, simply because the instrument loses validity. Most fruitful debate may be found

in pointing out that independence is too strong for mean statistics but conditional mean inde-

pendence suffices (Heckman, 1999, 831), and that IV estimators and LATE estimators are all

weighted averages of MTE (Heckman and Vytlacil, 2005).

As the standard IV estimate gives the weighted average of subpopulations, it is natural to

consider the IV estimation of QTE, or IV estimation of nonseparable functions, which we will

turn next.

VII Quantile Treatment Effects

Most of regression and propensity score based methods estimate the mean impact. However,

as Abadie, Angrist, and Imbens (2002) and Bitler, Gelbach, and Hoynes (2006) show, they

may miss some important heterogeneity of the impacts over the entire population. Quantile

treatment effect (QTE) estimates the impact on the quantile of the population. Suppose that we

are interested inθ quantile. Then,θ quantile treatment effect is given by:

∆θ(x) = qθ(x|D = 1)− qθ(x|D = 0),
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whereqθ(x|D) is an outcome function at quantileθ given covariatesx and treatment statusD

(Doksum, 1974). That is, we compare theθ quantile of the treated andθ quantile of the con-

trol. With appropriate construction of the counterfactual (the control), there is nothing wrong

in directly comparing the quantiles. Bitler, Gelbach, and Hoynes (2006) simply compare the

response at the specified quantile of treated and control distributions in randomized experi-

ments.

Average treatment effect is related by:

AT E(x) =
∫ 1

0
∆θ(x)dθ.

Quantile regression is a well-established estimation technique and its computation can be done

using standard statistical programs such asR and its packagequantreg, or using the algorithm

of Buchinsky (1998).*18

VII.1 Quantile Treatment Effects under Exogeneity

Firpo (2007) shows the efficient semiparametric QTE estimator and its
√

n convergence to

asymptotic normality. QTE, or overall quantile treatment effects (OQTE) in his terminology, is

identified in a two-step procedure. First, one estimates the propensity score nonparametrically.

*18 Quantileregression is derived as follows. Consider

min
m

∑
yi<m

(1− θ)|yi −m| +
∑
yi>m

θ|yi −m|
 = min

m

∑
yi<m

−(1− θ)(yi −m) +
∑
yi>m

θ(yi −m)

 ,
= min

m

 n∑
i=1

ρθ(yi −m)

 ,
whereρθ(a) = a · (θ − 1[a < 0]) is called acheck function, thus

ρθ(a) = [a|a < 0] · (θ − 1)+ [a|a > 0]θ = (1− θ)|a| · 1[a < 0] + θ|a| · 1[a > 0] > 0.

So the problem is:

min
m
E [
ρθ(yi −m)

]
= min

m

[∫ m

−∞
−(1− θ)(y−m) f (y)dy+

∫ ∞

m
θ(y−m) f (y)dy

]
FOC is:

(1− θ) · [−(y−m∗) f (y)]
∣∣∣
y=m∗ +

∫ m∗

−∞
(1− θ) f (y)dy− θ · [(y −m∗) f (y)]

∣∣∣
y=m∗ −

∫ ∞

m∗
θ f (y)dy= 0,

thus

−θ
∫ ∞

m∗
f (y)dy+ (1− θ)

∫ m∗

−∞
f (y)dy= 0,

or
Pr[y 6 m∗]

θ
=

Pr[y > m∗]
1− θ .

Thenwe see thatm∗ = quantileθ(y), where quantileθ(y) is y such that Pr[y 6 m∗] = θ. (y such that lower-tail
probability is equal toθ.) θ = 1

2 wherem∗ is median, a median LAD estimator, is the special case ofθ quantile.
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The approach he proposes is to follow Hirano, Imbens, and Ridder (2003) and estimate the

propensity score nonparametrically. Second, using the estimated propensity scoreĜ(xi), one

solves:

min
{qθ}

n∑
i=1

ω̂igρθ(yi − qθ)

where the weights are
ω̂i0 =

1
n

1−Di

1−Ĝ(xi )
, ω̂i1 =

1
n

Di

Ĝ(xi )
.

VII.2 IV Estimation of Quantile Treatment Effects

Using the monotonicity assumption, Abadie, Angrist, and Imbens (2002) propose a two-

step, IV procedure for binary treatment that applies the weighted quantile regression technique

of Newey and Powell (1990). The instrumentz is randomly assigned eligibility that explains

the participation statusDz, with the IV ‘monotonicity’ assumptionD1 > D0. It solves, for a

givenθ:
argmin
{αθ ,βθ}

E[ρθ(y− αθD − β′θx|D1 > D0)]

Their two-step procedure requires in the first stage to estimate the propensity score which is

used to construct the complier finding function:

κ = 1− D(1−z)
1−π0(x) −

(1−D)z
π0(x) , π0(x) = Pr[z= 1|x].

Note thatκ = 1 if Z = D = 0 or Z = D = 1, andκ < 0 if Z = 0,D = 1 or Z = 1,D = 0, hence

it finds the complier withκ = 1. Abadie (2003) has shown that

E [
ρθ

(
y− αθD − β′θx|D1 > D0

)]
= 1

Pr[D1>D0]E
[
κρθ

(
y− αθD − β′θx

)]
.

Then one can use the estimated ˆκ as weights in weighted quantile regression.

argmin
{αθ ,βθ}

E [
κ̂ρθ

(
y− αθD − β′θx

)]
.

Since this is an example of M-estimators, it is straightforward to derive the robust covariance

matrix for inference.

Chernozhukov and Hansen (2005) show the moment conditions that can be used in nonpara-

metric estimation of quantile treatment response functions, which they call theinstrumental

variable quantile regression (IVQR)model:

Pr
[
y 6 qθ(x|D)| Z]

= θ and Pr
[
y < qθ(x|D)| Z]

= θ.

A sample analogue is given by a vector of empirical moment conditions:

1
n

n∑
i=1

[
1[yi 6 αθDi + β

′
θxi ] − θ

] [ xi

zi

]
= op(n−

1
2 ).
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A distinguished feature of their methods is that IV monotonicity assumption is replaced with

rank similarity condition of an index that captures the heterogeneity in outcomes. Instead

of IV monotonicity, they assume the net outcome gain for a given ‘ability’ in the treatment

is known ex anteup to a distribution that is common to everyone. Under this assumption,

the estimated QTE has an interpretation as the treatment effect holding the distribution of

unobservable, or the mean of unobservable, fixed. Unfortunately, one needs a similar condition

as IV monotonicity for global identification of parameters.*19

Another feature of IVQR is that one does not require independence between the instrument

and selection equation disturbance terms, unlike other IV estimators or other estimators relying

on selection on observables. IVQR assume that decisions are explained by a general function

D(xi , zi , vi) wherevi is a random vector, allowing an arbitrary relationship betweenzi andvi

in selection. This is helpful when IVs are measured with errors hence become correlated with

selection errors as in Hausman (1977). Another instance is theExample 2 of Imbens and Angrist

(1994) that eligibility assignmentzi may be random yet with which official the applicants

must work on application may affect the participation decisionDi . This works analogous to

the measurement error problem:zi = 1 for eligible applicants may actually be less than 1

if assigned to an obnoxious or difficult official. Their method also allows estimation over

entire distribution of compliers and allows discrete and continuous treatment variables, unlike

Abadie, Angrist, and Imbens (2002) who consider only the binary treatment case.

Chernozhukov and Hansen (2004a) provide an application of their methodology to effects

of pension plan on wealth accumulation. Despite being flexible and not requiring IV mono-

tonicity, Chernozhukov and Hansen (2005)’s method requires an untestable assumption of rank

similarity in the unobservable. Chernozhukov and Hansen (2004a) use Abadie, Angrist, and

Imbens (2002)’s estimator to check the robustness thereby indirectly asserting the plausibility

of rank similarity condition in their application. Chernozhukov and Hansen (2004b) illus-

trate a simple, two-stage computation procedure to estimate the linear quantile function using

instruments for an endogenous regressorDi for a givenτ:

1. Define a grid of{α j , j = 1, · · · , J}. Choose the IV functionϕ(xi , zi |τ). Choose weights

vi(τ). Recommended choices are projection ofDi on xi , zi for ϕ(xi , zi |τ), andvi(τ) = 1.

*19 Chernozhukov and Hansen (2005)’s Theorem2 shows that global identification condition required for unique-

ness of parameter estimates is monotone likelihood ratio condition that likelihood ratio
fY1
fY0

is increasing inzi .

This indicates that eligibility increases the likelihood of being treated relative to untreated, which is similar
but different from IV monotonicity, that is based on distribution function rather than density function, used in
LATE.
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Thenrun weighted quantile regression to estimateβτ(α j) andγτ(α j):

1
n

n∑
i=1

ρτ
(
yi − α jDi − β′xi − γϕ(xi , zi |τ)

)
vi(τ).

Storeγ̂τ(α j) for eachα j .

2. For each ˆγτ(α j), findα j such that

min
{α j }

√
γ̂2
τ(α j)

a(xi , zi |τ)

with a(xi , zi |τ) = E[ϕ(xi , zi |τ)2].

VIII Before-After Methods

VIII.1 Difference-in-Differences Estimation

In words, the assumption emloyed are: omitted variables are fixed variables, either in level

or in first-difference. Conditional mean independence is not necessary, but one needs the

homogeneous treatment effect for all individuals.

Difference-in-differences estimatoris:

ÂT E(x) =
n1∑
i=1

∆ŷ1it (∆xit )
n1

−
n0∑
i=1

∆ŷ0it (∆xit )
n0

.

with
ϵit = ci + eit ,

whereeit is a random error with mean zero satisfies conditional mean independence (ci , vit ) y

(eit ,eit−1)|xit , xit−1. ∆ŷDit (∆xit ) is predicted∆yDit in the regression of∆yDit on∆xit .

A convenient way is to embed in the regression. Participation process is allowed to include

the fixed-effectci and idiosyncratic errorvit that should not be correlated with other idiosyn-

cratic erroreit , and we will write it as:

Dit = Dit (ci , vit , xit ).

Under this, we allow for a linear time trendγt:

yit = c+ αDit (ci , vit , xit ) + γt + β′xit + (ci + eit ).

Note, when program is introduced in timet, it is Dit = 1 andDit−1 = 0 for the treated, thus

∆Dit (ci , vit , xit ) = Dit (ci , vit , xit ) − Dit−1 = 1 for the treated,
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and∆Dit (ci , vit , xit ) = 0 for the controls. Note∆t = t − (t − 1) = 1. Then,

∆yit = γ + α∆Dit (ci , vit , xit ) + β
′
1∆Dit (ci , vit , xit )∆xit + β

′
0[1 − ∆Dit (ci , vit , xit )]∆xit + ∆eit ,

= γ + αDit (ci , vit , xit ) + β
′
1Dit (ci , vit , xit )∆xit + β

′
0[1 − Dit (ci , vit , xit )]∆xit + ∆eit .

OLS gives consistent estimates if (ci , vit ) y (eit ,eit−1)|xit , xit−1.

Further, if
β1 = β0,

which is frequently assumed in the simplest applications of DID estimator, then:

∆y1it − ∆y0it = α + ∆e1it − ∆e0it.

Taking expectations, we have:

E[∆y1it] − E[∆y0it ] = α = AT E.

In this case, ATE estimator is;

ÂT E=
n1∑
i=1

∆y1it

n1
−

n0∑
i=1

∆y0it

n0
.

If we omit some variables of∆xit from the regression whenβ1 , β0, we can still estimate

ATE consistently if changes inxit are uncorrelated withci . This holds, for example, whenci

is constant through time and its effect onxit is also constant through time, thus differencing

eliminates them.

The identification condition (ci , vit ) y (e1it,e1it−1)|xit , xit−1 precludes correlation between

vit and (eit ,eit−1) through common, unobservable time-varying shocks. For example, a health

shock realized int or t − 1 to the family member may prompt a person to participate the so-

cial program while the shock may affect the outcome of interestyit in a time-varying way.*20

Another example is that a weather shock which is omitted in the regression affects both par-

ticipationDit andyit . This can be partially resolved for the weather shocks at the village level

by including the village dummies in the regression.*21 Another important caveat is that, when

there is a serial correlation (residuals are correlated through time), there may be a substantial

bias in estimated standard errors but using the heteroskedasticity-consistent covariance matrix

reduces it. See Bertrand, Duflo, and Mullainathan (2004) for details.

*20 If its effects on outcomes are time-invariant, then we can use the fixed-effect model.
*21 Including the residual of participation equation, as done in Smith and Blundell manner, does not work because

one cannot consistently estimate participation due to the presence of fixed effects. Ravallion and Wodon (2000)
makes a mistake of including the endogenous variables of households. If we have three periods of data, using
xit−2 as instruments that is correlated with participationD(ci , vit , xit ) but not with the changes in outcome∆yit ,
unfortunately, does not work, becausexit−2 andci cab be correlated.

190



Difference-in-difference-in-differences estimator(robust to fixed-growth-effects):

AT E(x) =
n1∑
i=1

∆2ŷi

(
∆2xi

∣∣∣ Di = 1
)

n1
−

n0∑
i=1

∆2ŷi

(
∆2xi

∣∣∣ Di = 0
)

n0
.

Robust to an heterogenous fixed-growth-effect selection bias (γi + γ)t. Redefine the errors as

uit = ci + γi t + ηit , eit = γi t + ηit ,

whereηit are idiosyncratic errors that satisfy the conditional mean independence withci , vit , γi

given covariates, or (ci , vit , γi) y (η1it, η1it−1, η1it−2)|xit , xit−1, xit−2. Then:

yit = c+ αDit + (γi + γ)t + β′xit + (ci + ηit ).

We assumeDit = Dit (xit , ci , γi). Taking a first-difference:

∆yit = γ + α∆Dit + β
′∆xit + (γi + ∆ηit ),

in which∆Dit is positively correlated withγi of the composite error termγi + ∆ηit . Taking a

second-difference∆2xit
def
= ∆xi,t − ∆xi,t−1 = (xi,t − xi,t−1) − (xi,t−1 − xi,t−2):

∆2yit = α∆
2Dit + β

′∆2xit + ∆
2ηit ,

= αDit + β
′∆2xit + ∆

2ηit ,

which purges the individual trending termγi from the error, soDit y ∆2ηit , thus it is robust

to heterogeneous individuals with different growth rates in∆yit . The identification condition

is (ci , vit , γi) y (η1it, η1it−1, η1it−2)|xit , xit−1, xit−2. The same argument follows for the rest as the

first-difference case, only that it takes at least 3 periods, with 2 periods prior to the intervention

to implement this estimator.

Abadie (2005) discusses the nonlinear, semiparametric estimation of DID estimator. Denote

y,t as outcome value of periodt. It shows one can estimate DID nonparametrically with

E
[
y1,1 − y0,1

∣∣∣ x,D = 1
]
= E

[
h(D, x)(y,1 − y,0)

∣∣∣ x] , h(D, x) = 1
G(x)

D−G(x)
1−G(x) ,

because

E
[

1
G(x)

D−G(x)
1−G(x) (y,1 − y,0)

∣∣∣∣ x] = E [
1

G(x)
D−G(x)
1−G(x) (y,1 − y,0)

∣∣∣∣ x,D = 1
]
·G(x)

+ E
[

1
G(x)

D−G(x)
1−G(x) (y,1 − y,0)

∣∣∣∣ x,D = 0
]
· [1 −G(x)],

= E
[
y,1 − y,0

∣∣∣ x,D = 1
]
− E

[
y,1 − y,0

∣∣∣ x,D = 0
]
,

= E
[
y1,1 − y1,0

∣∣∣ x,D = 1
]
− E

[
y0,1 − y0,0

∣∣∣ x,D = 0
]
,

= E
[
y1,1 − y1,0

∣∣∣ x,D = 1
]
− E

[
y0,1 − y0,0

∣∣∣ x,D = 1
]
,

≡ average treatment effect on the treated

= E
[
y1,1 − y0,1

∣∣∣ x,D = 1
]
,
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the fourth equality follows under the DID identifying assumptionE
[
y0,1 − y0,0

∣∣∣ x,D = 1
]
=

E
[
y0,1 − y0,0

∣∣∣ x,D = 0
]
. Noting that linearity assumption in standard DID to be re-

strictive, he has shown a semiparametric way to approximate the unknown function

E
[
yi1,1 − yi0,1

∣∣∣ xi ,Di = 1
]
. It is well known that whenxi has relatively large dimension, it

poses a problem in nonparametric estimation. Approximation is given by solving

argmin
{γ}

n∑
i=1

[
Ĝ(xi)

{
ĥ(Di , xi)(yi,1 − yi,0) − g(xki;γ)

}2
]

whereg(·) is an approximating function of choice such as polynomial inxi , andxki ∈ Xk,

xi ∈ X, andXk ⊆ X. Thus we take:

E
[
yi1,1 − yi0,1

∣∣∣ xi ,Di = 1
]
≃ g(xki;γ).

• DID: Operation Blackboard (Chinn, 2005). Effects of reallocation of teachers from large schools to small
schools with single teacher on school outcomes. Estimation is at the state level using the number of both
schools.

• Banerjee et al. (2005) use DID in estimating the effects of remedial education on test scores.
• Duflo (2001): DID between high- and low-intensity groups.

VIII.2 Changes-in-Changes Estimation

In their seminal and important paper, Athey and Imbens (2006) proposed an entirely new

approach to program evaluation with before-after data. Unlike DID, which estimates the mean

of treatment effects under fixed-effect and constant treatment effect assumptions, they show

how one can derive the entire counterfactual distribution, both no-treatment for the treated and

with-treatment for the control, under arbitrary treatment effect heterogeneity. The assumptions

they used in deriving the changes-in-changes (CIC) estimator for continuousy are:

1. A single indexui ∈ U that explains the differences in outcomesyig,t, given groupg, time

t, and covariatesxi . Call U ability.

2. A common fixed outcome mappingh : U × T → Y with strict monotonicity inU,
∂h
∂U > 0 (does not have to be differentiable, strictly speaking). Commonality plays a big

role here, because it ensures that there is no fundamental differences between the treated

and the control with the same outcomeY. So it is implied that there is no difference in

economic environment between the groups except for the treatment. This may be seen

as another way of addressing the ignorability of treatment.

3. Distribution ofU is assumed to be fixed through time within a group (or more precisely,

independent across time within a group), orU y T |G. But the same individuali does

not have to have the same value ofu in different periods, only the distribution of them

to be unchanged. So any changes in outcome distribution is interpreted as changes in

functional forms ofh(u,t).
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4. There exists a substantial common supportU1 ⊆ U0.

Denote the random variableYgt as outcome of groupg at timet. Groupg = 1 is the treated,

and g = 0 is the control. When we denote the counterfactual outcome, we will make the

(hypothetical) treatment statusD explicit asYD,gt. Program is implemented at timet = 1.

Then, the counterfactual of the treated is denoted byY0,11.

Athey and Imbens (2006)’s main theorem is:

FY0,11(y) = FY10

[
F−1

Y00

[
FY01(y)

]]
. (30)

This shows how the quantile ofY0,11 can be computed.*22

Proofis relatively simple. Note:

FYN
gt

(y) = Pr
[
h(U, t) 6 y|g, t] = Pr

[
U 6 h−1(y; t)

∣∣∣ g, t] ,
= Pr

[
U 6 h−1(y; t)

∣∣∣ g] = Pr
[
Ug 6 h−1(y; t)

]
,

= Pr
[
h−1(y; t)

]
.

The second line follows because we assumeU y T |G. Then:

FYN
gt

(y) = FU,g[h−1(y; t)]

⇐⇒

FYN
gt

[h(U,T)] = FU,g[h−1 (h(U,T); t)]

(31)

So
h(U,T) = F−1

YN
gt

[
FU,g(u)

]
. (32)

Forg = 0, t = 0,
h(U,0) = F−1

Y00

[
FU,0(u)

]
. (33)

Apply (31) forg = 0, t = 1, thenFY01[h(U,1)] = FU,0[h−1 (h(U,1); 1)]. Then

F−1
U,0

[
FY01[h(U,1)]

]
= h−1(y; 1). (34)

From (33),h(U,0) = F−1
Y00

[
FU,0(u)

]
so

h
[
h−1(y; 1),0

]
= F−1

Y00

[
FU,0

(
h−1(y; 1)

)]
= F−1

Y00

[
F−1

Y01
(y)

]
, (35)

*22 We first choosey0,11, the counterfactual outcome value in period 1, because we want to know at given value
of y how much its quantile would be in the counterfactual distribution. Then we find the quantile ofy0,11 in
FY10, the period 1 control distribution. We use the actual control group’s distributionFY10 because this is the
‘placebo’ outcome distribution we want to compare with, and it is assumed that the only difference between the
groups is the treatment. This quantileθ gives the how much the latent indexu0 should be had the observation
y0,11 been in the control group, which is counterfactual. For thisθ we can get its period 0 value withF−1

Y00
(θ),

which we denote withy00. This is justified because the latent index’s ranking is assumed not to change over
time, or we are interested in the changes of outcome at the given quantile thus want to find the corresponding
quantile’s period 0 value. Then, we can useFY10 to get the quantile ofy00 to see what quantiley00 should have
been had it been included in the treated group. This is justified because of the common production function
assumption with a single latent index, so fory00 = y10, u0 = u1. The obtained quantile is the counterfactual
quantile ofy0,11.
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wherethe last line used (34). Applying (31) withg = 1, t = 0, we haveh(U,0) = F−1
Y10

[
FU,1(u)

]
, so

FY10 [h(U,0)] = FU,1(u). (36)

Then
FYN

11
(y) = FU,1

[
h−1(y; 1)

]
,

= FY10

[
h
[
h−1(y; 1),0

]]
, [by (36)]

= FY10

[
F−1

Y00

[
FY01(y)

]]
. [by (35)] �

To state in the simplest way, we will estimate the treatment effect for the quantileθ of the

treated:
∆θ =

(
yθ11 − yθ10

)
− (yθ̃01 − yθ̃00), yθ10 = yθ̃00, θ , θ̃ generally.

So
∆θ = yθ11 − yθ̃01.

Under the common outcome mapping assumption, the counterfactual ofyθ10 is yθ̃00 in control

with yθ10 = yθ̃00. yθ10 andyθ̃00 are observations with the same value ofui . Then, tracking the

change through time foryθ̃00, the change at quantilẽθ, should give the counterfactual foryθ11,

because the rank ofui are assumed to be invariant through time. For ally10 (all θ) on the

common support withy00, this should give the entire distribution of counterfactual fory11.

One can see that it is assuming that group affiliation does not matter in outcome. It is assumed

that if the unobservable abilityui is the same, then the outcome in both periods should be the

same.*23

The cookbook method for deriving the counterfactual, continuous outcome distribution for

the treated is:

1. Choosey10 in the baseline of the treated. For this valuey10, find the quantileq0 in the

baseline of the control.

*23 Onecan rewrite (30) as:
F−1

Y01

[
FY00

[
Y10(Y0,11 = y)

]]
= y, (37)

Using this, we can extrapolateY10 to Y01. Take any value ofY10, sayy10. This outcomey10 corresponds to a
specific valueu1 via y10 = h(u, 0). We can also find the value ofu0 if the chosen valuey10 is to be hypothetically
found in the control group, becauseh(U,0) is common across the groups henceU1 = U0 for the sameY10 = Y00.
Note that even withU1 = U0, corresponding quantileθ1 andθ0 need not to be equal because the distribution
FY10 and FY00 (hence distributions ofU1 and U0, following common production function assumption and
monotonicity assumption) are different. Nevertheless, we can findθ0 if for the choseny10 is to be found in
FY00. Using the transition (inverse) mappingF−1

Y01
: Θ → Y01 at quantileθ0, we obtain the outcome that we

should observe in period 1 for such period 0 quantileθ0. This gives the counterfactual period 1 outcome for the
choseny10, or y0,11.
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Figure 5: Changes-in-Changes Algorithm forY10 ⊆ Y00
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Note: For a giveny10 and its associated quantileθ1, we find the same value in controly00 = y10 and find its

quantileθ0. Then the counterfactual increment inY1 in the absence of treatment is∆y0,11 = y
θ0
01 − y

θ0
00,

thus CIC estimate is∆θ1 = y
θ1
11 − y

θ1
10 − ∆y0,11 =

(
y
θ1
11 − y

θ1
10

)
−

(
y
θ0
01 − y

θ0
00

)
.

2. For the quantileq0, find the outcomey01 in the second-period of the control. This is

the counterfactual outcome for the treated with baseline outcomey10 in the absence of

treatment.

3. Repeat 1. and 2. for entire support ofU1 ∩ U0.

Since it gives you the entire distribution (on the common support), it gives the quantile

treatment effects for any quantile provided that there is a common support. It can be used

in reverse to obtain the counterfactual distribution for the control, e.g., takey00 and find the

quantile from the treated, and so on. It is also shown that it can be used for multi-period, and

multi-groups.

One can incorporate covariates by estimating∆yig,t = γ
′
g∆xig,t + uig,t using the fixed-effect

model before the exercises. Get the fixed-effect estimate ˆcig =
Ti∑

t=1

ûig,t

Ti
. Then use ˆcig in place

of yig,0. The recommended procedure of Athey and Imbens (2006) is to estimateyi,t = δ
′di,t +

β′xi,t + ui,t wheredi,t = [gt, g(1− t), (1− g)t, (1− g)(1− t)]′ is a group-time dummy interaction

vector, andxi,t is without an intercept. Then construct group-time-inclusive residual measure

ŷi,t = yi,t − β̂
′
xi,t = δ̂

′
di,t + ûi,t for CIC estimation. This procedure accounts for cohort fixed-

effects, but not individual fixed-effects.

As this argument shows, incorporating covariates brings in the problem of consistently es-

timating the individual residuals. This is not possible for repeated cross-section data when

individual fixed effects are present. Usefulness of CIC that repeated cross-section suffices will

be limited under individual fixed-effects when we incorporate covariates.
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Figure 6: Two Inverse Mapping
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Note: Inf is the greatest lower bound of the set, and sup is least upper bound of the set.

F−1
Y ≡ inf {y ∈ Y|FY(y) > q},

F(−1)
Y ≡ sup{y∈ Y|FY(y) 6 q}.

For discrete outcomes, one observes masses at certain outcome values, thus one needs to

modify the strict monotonicity assumption to weak monotonicity ofh in u. Accordingly, one

can identify the (lower- and upper-) bounds of counterfactual distribution. Before doing so,

one must properly define the inverse of the distribution function. Athey and Imbens (2006)

define two inverse mapping,F−1
Y , F(−1)

Y :

F−1
Y ≡ inf {y ∈ Y|FY(y) > q},

F(−1)
Y ≡ sup{y ∈ Y|FY(y) < q}.

As Figure 6 shows, two inverse mapping agree whenF(y) is dense. For the flat segment, we

have:
F(−1)

Y (q) < F−1
Y (q),

and
FY

[
F(−1)

Y (q)
]
< q.

Hence for allq ∈ [0,1]:
FY

[
F(−1)

Y (q)
]
6 q 6 FY

[
F−1

Y (q)
]
.

Then their second main theorem (counterpart for the discrete outcome cases):

FY10

[
F(−1)

Y00

(
FY01(y)

)]
6 FYN

11
(y) 6 FY10

[
F−1

Y00

(
FY01(y)

)]
. (38)

Thisproof is also relatively simple. GivenU1 ⊆ U0, normalizingU0 ∼ U[0,1]. Then:

FY0t (y) = Pr
[
h(U0, t) 6 y

]
= sup{u : h(u, t) = y} . (39)
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Probabilityis equal to the value ofu0 becauseu0 is uniform on [0,1], and it is supremum ofu such thath(u, t) = y by
definition. Then:

FYN
1t

(y) = Pr
[
YN

1t 6 y
]
= Pr

[
h(U1, t) 6 y

]
= Pr

[
U1 6 sup{u : h(u, t) = y}] ,

= Pr
[
U1 6 FY0t (y)

]
.

This gives
FY10

[
F(−1)

Y00

(
FY01(y)

)]
= Pr

[
U1 6 FY00

[
F(−1)

Y00

(
FY01(y)

)]]
.

UsingFY

[
F(−1)

Y (q)
]
6 FY

[
F−1

Y (q)
]

for all q ∈ [0,1], we have:

Pr
[
U1 6 FY00

[
F(−1)

Y00

(
FY01(y)

)]]
6 Pr

[
U1 6 FY00

[
F−1

Y00

(
FY01(y)

)]]
= Pr

[
U1 6 FY01

[
F−1

Y00

(
FY00(y)

)]]
= Pr

[
U1 6 FY01(y)

]
= FYN

11
(y)

(40)

Similarly, FY

[
F−1

Y (q)
]
> q,

FY10

[
F−1

Y00

(
FY01(y)

)]
= Pr

[
U1 6 FY00

[
F−1

Y00

(
FY01(y)

)]]
> Pr

[
U1 6 FY00(y)

]
= Pr

[
U1 6 FY01(y)

]
= FYN

11
(y)

(41)
�

Note that from (39) we haveFY00(y) = sup{u : h(u,0) 6 y}. Since we normalizedU0 ∼
U[0,1] we have:

FU0(u) = u.

Then the value ofFY00(y) gives the correspondingU valueu. ForY10 = Y00 = y, corresponding

valueu is the same under the common mapping assumption. Then forY10 = Y00 = y, dis-

tribution FU1(u) is identified for the particular pointu in the support ofU1, which is equal to

the value ofFY10(y). GivenU1 ⊆ U0, distribution overU1 is identified byU1 = FY00(Y00), but

only at points withY10 = Y00 = y. Once points forY10 = Y00 = y are identified, they define

the natural lower bound and upperbound for distribution.Figure 7 gives an illustration. There

are three masses at{y1, y2, y3} such thatY00 = Y10 and corresponding frequencies inFY00(y)

andFY10(y). With normalization, we have threeFY00(y) as realization ofU1, and corresponding

FY10(y) as its frequencies. Lower- and upper-bounds are defined naturally.

In the discrete case, one needs to add exogeneity of covariates and weak monotonicity of

h(u,x, t) in covariatesx to assumptions. Then covariates will help narrowing the bounds. This

happens because for anyuk(t, xi) anduk(t, x j) that are associated with the same outcomey<k>

with xi , x j , in general we haveuk(t, xi) , uk(t, x j) thus adding more points in support ofu.

Note that DID is a special case of CIC that the former imposes linearity and common treat-

ment effect over entire support. CIC relaxes them by introducing two new assumptions, com-

mon outcome mapping and time-invariance of rank of ability. If it is a panel, then one can

track each individual to obtain transitional mappingYD0 → YD1, then time invariance of rank

is not necessary.

CIC is different from quantile DID (QDID). For a giveny10, the former fixes the period

0 outcome withy10 = yθ00 to define the quantileθ of counterfactual observation, and obtain
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Figure 7: Point Identification with Bounds in Discrete CIC
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Note: Three values ofY00 = Y10 = {y1, y2, y3} are observed, with corre-
spondingFY00(y) and FY10(y). By normalizationFU0 (u) = u. For
Y00 = Y10, underlyingU are the same for both groups,U0 = U1. Noting
FY00(y) = sup{u : h(u, 0) = y} we haveFY00(yi ) = ui . Thus points on
support ofU1 are identifiedu1, u2, u3, and its corresponding quantiles
FU1 (ui ) = FY10(yi ). Lower- and upper-bounds are defined naturally.

an intertemporal change at the quantileθ in the control by takingyθ01 − yθ00, treating it as the

counterfactual change in time fory10. The latter fixes the quantilèθ such thatq(ỳ10|Y1) = θ̀,

then define the counterfactual observation as the quantile satisfyingq(ỳ00|Y0) = θ̀. Then the

counterfactual intertemporal change fory10 is ỳ10 − ỳ00 = yθ̀01 − yθ̀00. This, however, ‘does

not make sense’ because it ignores the difference in outcome distribution between the treated

and the control. It is not immediate why we want to compare the same quantile of different

groups, if the distributions are not identical. Two distributions become identical if the treatment

assignment is random, hence QDID becomes relevant.

As one can see, this does not require the same individuali to have the same specificui ,

only the rank to be the same across periods. So one can estimate CIC using the repeated cross

section data, provided that each period sample is representative. However, one may be hesitant

to attribute all the outcome differences solely to the ‘ability’U, even after taking into account

the covariates, because one should expect idiosyncratic shocksvgit to play some role. This

should not be a problem if the errorsUgi andVgit are additive and if we are concerned only

with the mean impact, or DID, as the mean of such idiosyncratic shocks can be normalized

to be zero.*24 So the interpretation is that CIC identifies the shock-inclusive treatment effects

*24 It is impossible to integrate outVgit because we cannot identify the joint distribution ofUi andVgit. We only
identify the transformed distribution of a single random variableYgt = h(Ug,Vgt|G = g,T = t). With two
unobservablesUi , Vgit and one observed outcome, one cannot back outUi andVgit without functional form
restrictions. Consider an exampleYt = VgtUg. One generally needs the changes in variables by defining
Yt = VgtUg, Xt = Vgt, derive a joint distributions forfXt ,Yt (xt , yt) and integrateXt out to getfYt (yt). To integrate
out Xt, we need to knowfXt ,Yt (xt , yt) as a function ofXt and Yt. To be concrete, assumeVgt ∼beta(a,b),
Ug ∼beta(a+ b, c). Then one can showfY(y) = beta(a,b + c). But the problem is that, even the parametric
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if one compares quantile-by-quantile, not at the mean. This is the result of the single index

assumption that one can capture the difference in outcomes only withU. This limitation is the

same with other QTE estimators which we will cover later on. In contrast, DID estimator aver-

ages out the idiosyncratic shocks if the shocks are separable, because it imposes linearity and

constant treatment effect assumptions. If we impose linearity onh(u,t) and assume constant

treatment effects in CIC, then one can average out the idiosyncratic shocks by taking averages

over certain range of quantiles.*25 So CIC is a nonlinear generalization of DID.

Summary: Comparison of Estimation Methods

In evaluating the program, practitioners may ask one of the following questions:

1. Which method is most appropriate for the given data at hand?

2. Given the program implementation cycle and the resource constraints, which estimator

should we choose? How do we collect data for the chosen estimator?

Unfortunately, in most of the time, they ask the first question. This is because the evaluators

usually do not have sufficient budget nor time, and they must deal with the problem with given

data at hand. It is typicallyex postdata that they have, so they must rely on cross-sectional

variations in outcomes and covariates to explain treatment effects. They thus need a broad

range of covariates and a large number of potential control pool. If these conditions are not

met, it is not likely that, whichever the method one uses, the estimates will give reliable answer

to the question. So one must be content with the bound-based method.

Even if a broad range of covariates and a large potential control pool are available inex post

data, one still has to test the plausibility of exogeneity assumption. This is done by finding

ineligible and opt-outs, comparing lagged outcomes by treatment status, or estimate propensity

scoresG and inspect linearity of treatment effect inG. We have pointed out that the first two

may be demanding in terms of data requirement, and the linearity test may be the best option.

If exogeneity is rejected using an eye-ball test, one can infer the direction of selectivity bias.

If G is nonlinear and increasing in the treatment effect, there will likely to be an upward bias.

Without any credible instruments, one cannot resolve the problem of self-selection. Again, one

assumptionsare correct, we will only knowa andb+ c, but notb andc separately, so one cannot deducea+ b

andc.
*25 Taking the mean for a certain range over quantile [ua,ub], then the separable idiosyncratic shock term will be

equal to its population mean of zero. But this will not give us a consistent estimator for ‘average’ quantile
treatment effect for the chosen range, because quantile function can be nonlinear and so the average of quantile
estimators may not be the quantile estimator for the average over the range, orεua,ub [q(θ)] , q(εua,ub [θ]). Even
if h(u, t) is linear,q(·) needs not to be linear, hence the equality does not hold.
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mustbe content with the bound-based method in this case.

Although very unlikely, if exogeneity is not rejected one can use several estimators to get

ATE. One caution is that covariate-conditioned ATE1(x) is equal to covariate-conditioned

ATE(x) under conditional mean independence, but unconditional ATE1 is not the same as

ATE if covariate supportX1 for the treated is a strict subset of entire supportX. One can use

regression-based estimators, parametric or nonparametric, propensity score based estimators,

matching-based estimators. The literature has not established the finite sample property of

these estimators, which makes us hard to choose from.

If an instrument is available, one can use IV estimator or Wald estimator. These have ad-

vantages that one can handle self-selectivity of the treatment sample. Such an estimator gives

LATE, not ATE. It is ATE of people whose treatment status is changed with the (in)eligibility,

hence local. It is further shown that, in the presence of heterogenous treatment effects, IV

and Wald estimators may give weighted average of marginal treatment effects with unknown

weights. Thus applicability of IV-based estimator, despite being convenient in dealing with

endogeneity, is rather limited. Unfortunately, there is no clear concensus on the solution for

essential heterogeneity so far.

If one is fortunate enough to decide on sampling design before the intervention, one can

invoke on either randomization or before-after data collection, or even both. Randomization

will give the ITT estimator, but it is sensitive to placement and operational spscificities, and

its external validity is in question. Collecting the baseline always helps, as it gives more infor-

mation on the population. But the identifying assumption of most widely used DID estimator

is strong that pre-program condition cannot be correlated with participation decision. In the

meantime, it may be useful to extend the bound-based approach to the panel data setting where

one can control the additive individual effects.
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