CHAPTER 7

A Practical Guide to the Program Evaluation Metlfods
Seiro It&

Abstract
This paper surveys the recent development of treatnféetttditerature. It is intended to give practi-
cal guidance for the applied researchers and policymakers. After showing the fundamental problem
as that of missing counterfactual, we consider a variety of estimators according to the assumptions
on exogeneity. First, we will see the benefits of randomized treatment assignment. Then, we will
consider the case of randomization of eligibility, which is what is actually being randomized in most
of the social experiments. We will point out the problems in randomized eligibility assignment,
and some shortcoming of widely used intention-to-treat (ITT) estimator. Next, we will consider the
average treatmentfect (ATE) estimators based on exogenous treatment assignment. Noting exo-
geneity is a strong assumption, we will also consider the tests of exogeneity. Next, we will consider
the bound-based method that can be applied when exogeneity fails and are left without instrumental
variables. It is argued that one should use bound-based method more often rather than assuming un-
realistic assumptions to get sharp conclusions. We will also consider the instrumental variable based
method and its local average treatment estimator (LATE). We will see that LATE or IV estimators are
valid only when the treatmentfects are uniform across individuals, or when individuals participate
to the program without thinking of the individual benefits from participation, which are both very
unlikely. It is shown that, under heterogenous impact, the treatnfiéstt @arameter (marginal treat-
ment dfect, MTE) difers across individuals with fierent propensity scores. With this motivation,
we will study the treatmentfiect at given quantile rather than the mean impact, or the quantile treat-
ment effect (QTE) estimators. An IV based estimator is shown to improve on LATE as it impose the
distribution invariance, rather than treatmefieet invariance, at each quantile. Then, we will con-
sider the before-after data. Identification conditions of the widely poputterdnce-in-dierences
(DID) estimator is shown, and its limitation in the household context in developing countries. A
novel changes-in-changes (CIC) estimator is also explained, while its limitation on the single index
assumption is pointed out. The final section gives comparison over the methods.
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Introduction

Whatis program evaluation? Why do we need to do it? Plainly stated, program evaluation
shows the impact of a program or a policy. It is given as thEeBnce in the outcomes with
and without the program. We need to evaluate a program because we want to know how much
it had an impact on the outcome of interest.

The fundamental problem in program evaluation is that we cannot compare the outcomes
with and without the program for the same individual. It is impossible for an individual to be
both in and out of the program at the same time. So the problem we have is that of a missing
counterfactual. Program evaluation literature seeks to find the ways to construct the missing
counterfactual using statistical methods.

Naturally, the ways to construct the missing counterfactual depend on two things: the avail-
ability of information and data, and the statistical assumptions being met in the data. In what
follows, we will see the hierarchy of statistical assumptions, from the strongest to the weakest:
conditional treatment exogeneity, randomized eligibility, additive and time-invariant hetero-
geneity (fixed-effects), and presence of exogenous covariates. Depending on the assumptions
being met, the possible choice of estimation method is determined.

Oddly enough, it is the strongest assumption, conditional treatment exogeneity, that is being
employed most in the applied works. This is chosen probably out of the desire for ‘what needs
to be done’. Evaluators are often tempted to assume too much than warranted in the data to
draw sharp conclusions. This is because sharper conclusions are easief=b Iteavever,
what one wants does not necessarily hold in reality, and one must adhere to the principle of
‘what can be done’. This principle calls for the knowledge of conditions that each estimator
requires to correctly compute the impacts. This paper aims to serve as a practical guide for
applied researchers and policymakers to the various estimators proposed in the treitmient e
literature.

Having said the importance of statistical assumptions that hold in practice, it should be rec-
ognized that they are not something we must always take as given. They can be made to hold.
When the epidemiologists run the clinical trials in the randomized, double-blind processes,
they make sure that random treatment assignment (over the population of participating pa-
tients) holds. When the administrators of job training program under the Job Training Partner-
ship Act (JTPA) randomly assigned the training eligibility, they tried make sure that eligibility

"1 Yet there is another factor which can be more important in practice: wider availability of statistical programs
based on this assumption, a ‘supply side’ factor. For exampl®, ithere are three fierent packages of
programs that compute the propensity score matching estimator.
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is exogenously given without any recourse to the ability of each individual. Tioet® and
initiative taken up by the Poverty Action Lab on social experiments are also intended to make
sure that the eligibility is randomly assigned.

The statistical methods that can be used without calling for unrealistically strong assump-
tions depend on how well the evaluators are prepared. Preparedness can be understood in terms
of: time and resources to be spent on, timing of evaluation, and implementability of program
design suited for evaluation study. If a large scale survey can be done, it will equip us with the
law of large numbers so the estimation will be more precise. If we hatieismt time, then we
can wait until the outcome of interest has completed the change due to the program. If we can
initiate the survey prior to implementation, then we can collect the baseline to be compared
with the post intervention data, which gives more reliable control over the heterogeneity of
individuals. If a bald experiment can be implemented, then, as we will see, we have less to
worry about the biasedness in the estimates.

This suggests that one needs to at least plan ahead for evaluation. One needs to plan evalu-
ation when they decide on program implementation. As we will see, having prior information
buys us credible estimation even if we do not have a large number of explanatory variables
(covariates), hence saves us with some money on collecting them. With stronger program
implementability, one can randomize the eligibility to the point nobody would not decline to
participate in the program if eligible, which will allow us more precise estimation. Or one can
set and implement without exceptions an objective rule that is not related with the capacity
of people, so we can safely assume that participants and nonparticipants are divided only by
chance.

In the next section, we will articulate the nature of the evaluation problem. In sédtion I,
we will see how the rige comparison between participants and nonparticipants bias the es-
timates, in the voluntary participation programs. In sedfdn IIl, we will see why randomized
experiments are preferred, but also caution on the use of popular ITT estimator. In Eektion 1V,
we will survey the most widely used set of cross-section estimators. We will study the tests
of exogeneity assumption that the estimators are based on. In dettion V, we will briefly move
away from point estimation and learn how we can bound the unknown parameter of interest
with minimal set of assumptions. In sectlod VI, we will cover the instrumental variables based
methods, including LATE and IV estimators. It is pointed out that recent literature often argue
against the use of IV based methods. Sedfion VIl provides a glance at the growing literature
of quantile treatmentféects, which can alleviate the shortcoming of IV estimators. In section
we will consider the panel data models. Widely used DID estimator is shown and the
plausibility of assumptions in the household context is discussed. We also give an illustration
of the novel CIC estimator. In the last section, we will summarize and compare the various
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techniquesWe will omit the Bayesian and structural approaches because they are not practical
for the applied researchers nor the policymakers. But this does not mean that one should be
hesitant to use them, as they allow for richer heterogeneity and parameter identification.

| Counterfactual and Treatment Effects

The relationship we want to estimate is theet of program compared with no intervention.
The indicator for program intervention, or treatment statuses, is denoted a<,1 where
1 indicates with treatment and O otherwise. We will estiniakimpact on the outcome of
interesty. The natural estimation is to get such an impact of a targeted person

treatment effect dD; oni = (y; whenD; = 1) — (y; whenD; = 0),
= (YilDi = 1) - (viIDi = 0),

where we wrotey; whenD; = 1) as |D; = 1), and so forth. The symbaJ is used such as
‘'yIX' means ¥ is conditioned orx, or ‘value of y whenx s given.’ If covariates (regressons)
help explain the variations iy, then they should be included:

treatment &ect of D; oni conditional onx; = (yi|Di = 1,%;) — (¥i|D; = 0, x;),

wherex; = (1, X1, X2, - - , Xik—1)" IS ak x 1 vector of observables.

The fundamental problem in estimating the above is that we never obgddye= 1 and
yiIDi = 0 at the same time for the same individialSo the challenge is to construct a suit-
able counterfactualof personi’s treatment status, that is, to construct what happened ivere
did (did not) get treated wheinactually did not (did). For most of the time, constructing a
counterfactual for each individual requires strong assumptions. They basfeyertisets of
assumptions whose plausibility must be verified in the context of programs under question.

It is, however, possible to construct theeanof counterfactual over entire targeted popula-
tion E[yi|D;, xi] under a set of reasonable assumptions, wigids an expectation operaté?.
The estimator we get using the population average is calleaviiage treatmentfect (ATE):

AT E(X) = 8[y||D| = l,Xi] - 8[y||D| =0, Xi].

There are several ways to construct the (means of) counterfactual. We can classify them into
four categories: methods relying on randomized treatment assignment, methods based on ob-
servable treatment assignment rules, methods using before-after data, and methods based on
instrumental variables.

2 As we will later see, any statistic other than the mean, such as various quantiles, of population can be studied.
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It may also be of an interest to know the mean treatméecefor those who took the
treatment, or thaverage treatmeniffect on the treatedvhich we denote aAT E;:

ATE; = 8[yulDi = 1,x] - E[YailDi = 1,xi]. 1)

We can also consider the average treatméateon the controhT E, as:

ATEo=8[y1i|Di =O,Xi]—8[yoi|Di =0,Xi]. (2)

Although it may sound natural to pinning down the estimates of treatnfiaut parameters
to the single numbers, there is another strand of thoughts that seeks to bound the estimates
under weaker assumptions. This is appealing in the cases where the assumptions usually em-
ployed to point estimate the treatmerfeet parameters do not hold. We are often not as
fortunate as the econometric theorists may think, and are left with data that do no satisfy the
most popular set of assumptions. The bound-based approach allows us to get some informa-
tion of the treatmentfeect, and with prior information, one can narrow down the bound to a
reasonably width.

Not incidentally, it is rare to see in applied works the bound being used. This may be due
to the fact that bound is not very popular among professional and nonprofessionals alike, and
even if it is, the bound is sometimes too wide. However, this should not mean that we shall
invoke the stronger assumptions to have a bound turned into a point estimafe. _As]Manski
[(T995, 8) notes, one may have to develop tolerance for greater ambiguity in estimates, and
may also have to face up with the hard fact that not all the questions can be answered credibly.
A striking fact is that, even under a randomized experiment which is considered to be the gold
standard in program evaluation, one can only get the bound of treatiffiectt garameter, and
one sometimes has to invoke strong assumptions to get it pinned down to a single number. In
this note, however, we will mostly focus on treatmefieet parameters in numbers because
most of the debate happens in the single valued parameter domain, not in the bound domain.

In what follows, we will assume that treatment will onlffect those who are treated. This
is calledstable unit treatment value assumption (SUT\Eules out externality in treatment

such as deworming medicine studied[by Miguel and Kremer (2004), or the repercussion on

others through market mechanism, calleddkaeral equilibrium gectsstudied by Heckman,
Lochner and Taber (1998). The latter can be considered as analogous to the price-taker as-
sumption in microeconomics, which is often violated in a large scale interventionfibatsa

prices. For example, in a large scale job training program, returns to skill may be lowered be-
cause of increased skill supply in the successful completion of the program, which may lower
the treatmentféects.
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[l A Selection Problem

Suppose that we want a consistent estimator of ATE. An estinbdgosaid to beconsistent
if A
plimb=bh.
This means that if we take plim or th@obability limit (meaning if we increase the sample

size to infinity), the estimatds will coincide with the true valud.
When we run a regression with OLS

yi =a+bx +6,

the necessary condition for estimated fti@gentsd andb to be consistent is that ande are
uncorrelate® Although the condition is simple, it is almost always unmet in thserva-
tional datawhere the value ok; is chosen purposively by the agents under some optimizing
process, rather than by a researcher who prefers to randomize the valdsratachi (for
an estimation purpose, which is easily done in lab experiments of hard sciences that produce
theexperimental data). So all the estimatidfioets boil down to devising a way to make these
variables to become uncorrelated with each other (we sagritiegonalize xande). For the
simplest program evaluation where only participation affgctse usex; = D;.

The reason for correlation betwe®q and ¢ is clear. If the ‘ability’ (in benefiting from
the program) among individuals is not uniform, then, under voluntary participation, the par-
ticipants are more likely to have higher ability than the nonparticipants. Since we cannot
observe ability, but it fiects the outcomg nonetheless, it must be includedenfor example,
& = G + ¢ whereg; is ability of individuali known toi but unobservable to researchers and
g is a random error term. Thed; andc; must be positively correlated, as a higher value of
¢ is more likely to be associated with; = 1 if the agents are rational, unless we explicitly
includec; in the regression. The bias of estimatedr deviation of expected value bffrom
trueb, is called aselection bias, as it originates from the fact that people voluntaeilirselect
themselves into the program.

*3 Sufficieng requires the model specificatign= a + bx +  to be correct, not, for examplg, = a + xib + 6,

2 2

2 P
¢ < oo, andx’ — X° < 0.
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Figure 1: Heterogenous Impacts and Self-Selected Program Participation
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[l Randomized Experiments
1.1 Randomization of Treatment

To develop a theory on treatmerttect estimation, we start with the simplest setting and
assume that the treatment assignni2rt 0, 1 is random. When treatment stafdss randomly
assigned to individuals, the value bfis (statistically) independent of any variables:

randomized trials << any variablesi D.

a 1L bmeansais independent db (and vice versa).

Let us consider the outcomes with and without treatment as random variablesfi@tirati
means. Denote the (stochastic) outcomes with treatmewt asd without treatment ag.
Consider a simple example where we assymdor D = 0,1 is additively separable in a
systematic part (mean)p and a stochastic patp which varies from an individual to an
individual and has a mean of zero. Under this simple setting, we can write:

Yoi = Mo + Uoi, 3)
Yii = 1 + Uy

Upi is an individual specific benefit for individuafor statusD;, and we have assumed that its
means are zero's. Zero mean is a natural condition given we have purged all the systematic
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Figure 2: Heterogenous Impacts and Upward Biasedness of Ne Estimator
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elements intQup.
Under this notation, if the treatment is randomly assigned, we see the first advantage of
randomized treatment assignment:

ATE = &[yilD;i = 1] - &lyilD; = 0],
= &yl - ElYoil = Elua + Uzl - Eluo + Uail = 1 — po,

where we used[uy;] = E[ug] = 0. The sample analogue is:
ATE= ) 24 -3 2
Alternatively, one can also estimate ATE by regressingn 1 andD under a randomized
trial. Note from the definition ofp;, we have:
yi = (1 - Di)Yoi + Diyai.
Plugging in the above int§}3), we have:
Yi = (1= Di)(uo + Uoi) + Di(ua + Ugi) = (uo + Uo) + Di(ua — po) + Di(Ui — Uoi).  (4)
Taking &lyi|Di], we have:

ElYilDi] = po + E[Uo|Di] + Di(u1 — uo) + Di&luy — UailDi] = po + (u1 — uo)Di,  (5)
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wherethe last equality follows fron€[uy|Di] = &E[ua] and E[ugilDi] = E[uei] by random
assignment oD;, and we have&[upi] = 0 by assumption. Thus the regression parameter on
D; gives ATE.

If we take into account of the other factdgis= (xy, - - - , Xik—1) that affecyy, we can run OLS
using all observations (treated and controls are used in the same regression):

Vi = a+aDi +ﬂ’)~(i + €.

The estimated parameteris a consistent estimate afor ATE, because; 1L D; under ran-
domized trials. Even if we do not include explicitly and run a regression gf on 1 andD;,
the parameter oB; gives a consistent estimate AT E(x). OmittingX; in effect squeezg&X;
into the composite residua) = B'X; + . This does notidiect consistency oAT E(x) estimate
&, because, under a randomized tr3|is uncorrelated with any variablE8 So it gives:

ATE(X) = a.

To be more rigorous on the conditional version of ATE, assume the separable model and take
&lyilDi, xi] on @). NotingD; is independent of any variables, including mean and stochastic
part of ygi, y1j, we can take expectations gf conditional onx; separately fromD;. Thus
taking an expectation conditional @y andx; of @), which is equal to taking an expectation
conditional on knowrx; with D;, we have:

E[YilDi, Xi] = po + E[Uil Dy, Xi] + (11 — po) Di + E[Dj (Ugj — Uoi) |D;, X,
= pto + BoXi + (11 — po)Di + (B1 — By)’ Diki,

the first line follows becaus&[D;|D;, x;] = D;, and the second line follows because

(6)

E[D;j (ugi — Ugi) ID;, xi] = Di&[usi — Uil Di, Xi],
= Di&[ugi — ugilxi],
= Dia[ﬂi)?i + €1 —ﬂz))?i - Eoi|Xi].

So regressing; on 1,X;, Di, DiX; gives an estimate of ATE as the d¢beient onD; whenD; is
randomly assigned.

Another advantage of randomization is that one can sample from the entire population. In
terms ofEicre 2, one can sample from entire support of ‘ability’ distribution. So one does
not have to worry about ffierences in the values of covariates, because associated covariates
can be considered as also being randomly selected. This will be an important upside in the
propensity score based methods that require strong ignorability condition descrbed in IV.3.

*4 Technically, this may affect the efficiency of estimate using the finite sample, so by inckydinguld give
more precise estimate afthan the mean dierence.
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Notethat, from ATE and ATE we have:
ATE = f {E[Y1 - YoID = 0,X] Pr[D = O] + E[y1 — YoID = 1,x] Pr[D = 1|x]} dF(x),
X

- [ ety yobadr 0.
X

becauseE[y: — YolD, X] = &E[y1 — YolX] under conditional mean independence. Similarly for
ATE;:
ATE = [ &lys - yoxIdF (0.
X1

and if X # X,, ATE#ATE;.

1.2 Randomization of Eligibility

It should be noted that, under individual freedom, it is not the treatment diattisat is
being randomized, because it isfiiult to force someone who are unwilling to be treated. An
experimenter can only randomly assign gligibility to participate in treatment. Eligibility is
not equal to treatment, because some individuals can opt out (called an exclusion error or a
type 1 error). Comparing thetfects of the eligible group over the ineligible group gives the
intention-to-treat (ITT)estimator. An ITT estimator can be of an interest to the policymakers
who understand the inability to assign treatment at will. It gives the mean outcdieredce
when the treatment isfiered and when it is not. Denoting the eligible wigh= 1 and the
ineligible withz = 0, an ITT estimator for mean impact is given by taking a difference between
the mean outcome of the eligible and the ineligible:

T Yi Yi
=) 232
; =

wheren, is the number of eligible and, is the number of ineligible individuals.

The group of people who are influenced by eligibility belongs to unknown subpopulation,
and the ITT estimator gives the weighted average of who participated and who opted out less
the average of ineligible group, with the weights possibly being a function of unobservables. So
the difference in the averages of two groups does not give ATE. This echoes with the criticism
raised against the instrumental variable estimator of ATE which we will cover later on. It is
also shown that the ITT estimator for the mean does not give, AlthRer.

To see these points, let us consider an example. Suppose that there are two types of indi-
viduals, one who wishes to get treated if eligible (wishers), and one who wishes not to get
treated even if eligible (nonwishers). The fraction of wishers in populatisndg0, 1]. Non-
wishers have the outcome yf= a, while wishers without treatment haye= b, and wishers
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with treatment havg; = c. So ATE is given byc — b When an experimenter random-
izes the eligibility, we assume that only the wishers with eligibility assigned will get treated.
(We therefore assume that there is no one treated if ineligible or if being a nonwisher.) Then,
the mean outcome for the eligible is a weighted average of nonwishers and eligible wishers,
(1 - w)a + wc, while the mean outcome of the ineligible is a weighted average of nonwishers
and ineligible wishers, (+ w)a+ wb. The ITT estimator gives:

ITT = w(c- b).

So it does not give ATE but ATE; multiplied with wisher proportion in the populati&#.

Note that the ITT estimator is increasing in wisher proportiorSo the ITT estimator may
be sensitive to the popularity of treatment among the subjects, which poses inconvenience
because the perception can bffatient from the objective facts. It is also problematic because
popularity or wishers proportions can vary with regions or time, and it may also be a function
of how much resources are spent on educating the public about the benefits of treatment. So
w can be endogenous to both program placement and specificities of program operations. This
means that a large ITT estimate may not hold in other areas unflieredit population and
different program administration. In short, ITT estimator certainly serves as a reference, but it
may not be useful due to its lack of external validity.

I11.3 Pitfalls in Randomized Studies

If it is admissible to restrict program implementation only to a group of regions, then one
can use distant regions with similar characteristics to construct the counterfactual. However,
in practice, there remains an ethical and political problem whether one can restrict program
implementation to one group of regions when there is another, yet distant, group with similar
characteristics hence the similar needs for intervention.

Then how feasible for an authority to randomize the eligibility? It may seem politically
infeasible to randomize the eligibility across individuals. However, if the request for program
is strong and the funding or logistical capacity is limited, sometimes it is perceived as fairer to

*5 ATE should not be the interest of experimenter under free individual will in this case, because no one from
nonwishers would never, ever, get treated.

*6 Had the proportions of wishersftiir between the eligible and the ineligible, then the ITT estimator does not
give an interesting parameter. Denoting wisher proportion of the eligibhg and the ineligible asv,

ITT = wi(c—a) — wo(b - a).

The proportions may dlier if an experiment is done against twdfdrent areas. Note that we may not be able to
estimatenp. If there is no one from the ineligible take the treatment, LATE, an instrumental variable estimator
of treatment effcts to be covered later, gives AT Because it divides the ITT estimator with théfeience in
treated proportion among the eligible and the ineligiblewer0 = w.
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randomizethe program eligibility. This is mostly the case for NGOs or governments with lim-
ited administrative capacities. Examples include Progresa of Mexico which randomized over
regions (to be the first to get the program), school voucher program in Columbia which used
a lottery for students, Bolivian Social Fund that randomized over communities, deworming
medicines and schooling inputs (flip charts, school meals) interventions that randomized over
Kenyan schools in backward districts, and, (the converse case of too few demand of) military
service draft in the US during the Viet Nam War.

In addition to ethical and political economy concerns, there may be bias induced in ran-
domized studies due to lack of capacity on the part of experimenters. In their careful review

of social experiments in the UE, Heckman and Smith (7995) point that, in one labor market

program, inability of experimenter to find affigient number of control has lead to an ex-
pansion of target population beyond the original plan which alters the composition of subject
pool. They also note the possibility that experimenters may use the threats of termination on
the individuals who are currently receiving other benefits not to drop out, so would-be drop
outs or opt outs are included in experiments by forced compliance. Thus the operational as-
pects of randomized studies maffext the subject pools both in the treated and the control.
Suchrandomization biaseads to diferent composition of subject pools than voluntary-based
programs, so the estimated parameters may not be relevant for the ITT estimator.

Another possible bigs Heckman and Smith (1995) suggesikistitution bias This is the
problem of contamination when there is an alternative program available for the control. Any

treatment ffect estimates are thus interpreted as ffiectés of treatment over whatever avail-
able substitutes to it, which are not the proper counterfactual. This is likely to be serious if
the need for treatment under question is widely acknowledged and there is competition over
implementation. NGOs in developing countries often compete with each other in achieving
better outcomes, which is quite sound by itself. However, this may contaminate the control
by providing the substitutes or inducing migration to other NGO'’s dofaiSo it becomes
crucial for successful implementation of randomized experiments that the experimenter holds
monopoly power over the provision of services. This will narrow down the feasible area for a
randomized study.

In an important papef, Manski (1996) shows three other types of problems that an evaluator
may face in social experiments. The first problemastial compliance. Note that the average
treatment &ect on the eligible can be written as:

Ely1 - Yolz = 1] = {E[y1IDi = 1,7 = 1] - ElyolDi = 1,z = 1]} Pr[D; = 1|7 = 1]
+{&ly1IDi = 0,7 = 1] - E[yolDi = 0,z = 1]} Pr[D; = 0fz = 1].

*7 Even if each NGO segments the regions, such segmentation is endogenous and is likely to bias the estimates
through nonrandom program placement.
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Given thatz is randomized, ATE on the eligible is just an ATE. In social experiments, we
observe the outcomes of eligible compliers, so their mean \@jlygD; = 1,z = 1] and
their proportion PiD; = 1|z = 1] among the eligible can be computed. It may be possible
(but not in every social experiment) to observe the outcomes of eligible noncompliers, so we
can getS[yo|D; = 0,z = 1] and their proportion PE); = 0z = 1]. But social experiments
do not give the counterfactual outcomes of compl&w|Di = 1,z = 1] and noncompliers
Ely1IDi = 0,z = 1], which makes us impossible to compute ATE. This is due to the fact that
experiments cannot provide the joint distributionypfandyy because one cannot obsewyge
andy; at the same time. So one cannot obtain the joint distribution or conditional densities
f(y1lyo) and f (yoly1) which are required to compug&fy] under some policy.
If we assume that mean outcomes would be the same between compliers and noncompliers,
ElyolDi = 1,7 = 1] = &[yolDi = 0,7 = 1],
Ely1lDi =0,z = 1] = &[y1IDi = 1,7 = 1],

or
ElyplDi = 1,7z = 1] = E[ypIDi = 0,z = 1] = E[yplz = 1], (7

then ATE is identified.
Ely1 —Yolz = 1] = {&[w1IDi = 1,z = 1] - E[yolDi = 0,z = 1]} Pr[Di = 1|z = 1]
+{Ely1Di = 1,7 = 1] - E[yolD; = 0,7 = 1]} Pr{D; = 0jz = 1],
= &[y1lDi = 1,7 = 1] - &[yolDi = 0,7 = 1].
@@ is called theexogenous complian@ssumption because the mean outcome of compliers
and noncompliers are assumed to be the same once the treatment is assigned (or not assigned).
Imposing exogenous compliance is one way of dealing with partial compliance. However,
it effectively trades wide credibility of estimate for stronger conclusions_As Manski (1996)
notes, if credibility is a central concern in evaluation, it is not an attractive way in dealing with
the problem of missing counterfactual. Another way to deal with it is computing the bounds
on the estimates. Denokg andkp aslogical lower- and upper-bounds on the mean outcome
yp for eligible noncompliers. Then:
EyaDi = 1,7z = 1]Pr[Di = 1|z = 1] + k) P{D; = 0l7 = 1]
<&lyilz =1]
< &[ylDi = 1,z = 1] Pr[Dj = 1jz = 1]
+k Pr[D; = 0jz = 1],

and
ElyolDi = 1,7 = 1] Pr[D; = 1jz = 1] + k, P{D; = 0lz = 1]

< Elyolz = 1]
< ElyolDi = 1,7 = 1]Pr[D; = 1]z = 1]
+ ko Pr[D; = 0z = 1].
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Then:

[E[yalDi = 1,3 = 1] - ko| PD; = 117 = 1]
~ [E1y0lDi = 0. = 1] - k| P{D; = 0]z = 1]
<&ly1-Yyolz = 1]
<[&1IDi = 1.z = 1] - k| P{Di = 1jz = 1]
— [&1¥0lDi = 0,7 = 1] - k¢ | Pr[Di = 0[z = 1].

or . .
(11— ko) (L= p) = (o —k;) P < Elyr - Yol < (11— ko) (L - P) = (1 —ka) P,  (8)

wherewe suppressed the conditioning event 1 in E[y; —Yo] because eligibility is randomly
assigned, and

ur=&EyiDi =1,z = 1], to = &E[YolDi =0,z = 1],
p=PrDi =0iz = 1].

The above bound may not be narrow enough, so it may not give a useful answer to the question
that policymakers ask. However, a weaker conclusion is a price of wider credibility as we
maintained on not imposing strong assumptions dgin (7). One sees that, if we assume to know
the way this subpopulation of wishers represents the entire population, then one obtains the
treatment effects in numbers. If, on the other hand, we would not want to assume such, then
we only get the bounds.

The second problem in an experimental studstiatification or experimentation on a sub-
population. This happens if the subjects are drawn from a particular subpopulafion) Man-
gives examples: clinical trials are often tested on the subpopulation of volunteers,
Illinois Unemployment Insurance experiment is tested on people who are already on the un-
employment insurance, Jobs Opportunities and Basic Skills of 1988 drew sample from Aid
to Families with Dependent Children (AFDC) recipients. Denoting the indicator of subpop-
ulation asS = 1, one needs thexogenous stratificatioassumption in order to obtain the
population treatment effect from the subpopulation:

Yo LS. 9

@ is highly unlikely if S represents participants of a social program, because people who
are under certain social program find it beneficial to subscrib&. réfpresents geographical
stratification, [) may hold in some cases, for example, randomization over implementation
order. If S represents an income classes or social groups, a@in, (9) is implausible because
the entitlements are usuallyffirent among dierent income classes and social groups. It is
straightforward to show that assumifig (9) on the subpopulation of wishers or particular strata
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gives treatmentféect parameter in numbers, while not doing so will give the bound on the
parameter.

The third problem igreatment variation. This is a problem in scaling-up an experiment:
an evaluator wants to estimate the treatmefgtot applied to the new population where some
of the intended subpopulation may or may not get treated, while the evaluator has the knowl-
edge of marginal distributions gf for bothD = 0,1 from the existing experiments. Despite
randomized experiments give the marginals, it is rarely the case that the same implementation
of assignment rule used in experiments applies when it came to be scaled-up. This happens if
universal implementation of treatment is untenable due to budgetary and logistical constraints,
or if there is partial compliance in the program. So the randomized experiments may not pro-
vide a stficiently informative reference. This can be considered as the operational counterpart
of randomization bias.

The problem, then, is to get the possible outcome distribution under partial compliance or
different assignment rulgs. Manski (1997) calls itrthiging problem: finding[y] under some
policy that allows arbirtrary partial compliance or nonuniform treatment, using the knowledge
of marginals&[y|D] from fully complied experimental studief. Manski (1995), (1997) show
that, under a binary treatment, one can construct the bound gh Rdturally, depending on

the assumption one makes, the boundiediWe will cover the bound based methods in detail
in the later section.

So one must be careful when reading upon a claim that a randomized social program ‘is
found to have an impact’ or ‘significantlyffacts the outcome’, because, even with the ran-
domized studies, there may be bias. Even if there is no bias, one can only get an ITT estimator
which has questionable external validity. Further, even if it has external validity, the actual,
feasible policy implementation may beffdirent from experimenf Without prior informa-
tion or further assumptions, the most robust statement can only be made with the bound, not

the point estimates. Quoting frdm Manski (1996, [31):

My own research, whether based on experimental or nonexperimental data, reveals a prefer-
ence to maintain weak assumptions to keep attention focused on treaffeets im populations
in substantive interest. If that means one can only bound the treatment of interest, so be it.

While[Manski (1996) stops at the conservative bound estinfates, Heckman and Smith (1995)
advocate for using nonexperimental estimation. In addition to the pitfalls in randomized studies

suggested so far, they argue that randomized studies: do not provide insights into the mech-
anism behind the succéfslure of program, are not easy to understand under the presence
of randomization bias, cannot build upon the cumulative knowledge of the nonexperimental

*8 This applies equally to the nonexperimental estimators, though.
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studiescannot learn about the drop out or opt out processes, tendfes om lack of admin-

istrative supportsd Citing[Calonde (1988)’s influential study that compared nonexperimental
estimators with an experimental estimator, they note that limited sample size, limited range

of applicable nonexperimental estimators, and lack of model selection strategies usually per-

formed in nonexperimental model checks. Heckman, Tchimura, Smith, and Todd](1998) use

experimental data of JPTA and show that propensity score based methods and DID give results
consistent with the experimental evidence. They also note the benefits of nonexperimental data
when having participants and nonparticipants to be in the same labor market so one can iden-
tify parameters over entire support of propensity score, applying the same questionnaire to both
groups, and including information on recent labor market experiences. This is in a sense a little

odd because they are basing their benchmark on the experimental estimator, while Heckman is

rather critical on its use jn Heckman and Smith (1995).

A problem similar to partial compliance in randomized experiments is attrition. In practice,
one can drop out after learning the net benefits of the treatment. This will pose a selectiv-
ity problem if the drop outs are experiencing or learning the unobservable disutility in the

treatment.[ Chan _and Hamilton (20P6) use structural estimation to estimate the impacts of

unobservable individual side effects in explaining the drop outs in a clinical trial. The iden-
tifying assumption of individual sidefiects bases on the fact that the trial was conducted in
the double-blind process, so the assignment to particular treatment does not reflect the prior
beliefs or the preferences over treatment choice, so drop out process reveals the heterogenous
impact of each treatment. This condition, however, should not hold in the social experiments.
So an ITT estimator may overestimate the impact if attrition is due to negative selection.

e Progresa (a conditional cash transfer program, see Skoufias, 2005): randomizing at the district levels, then

enforce eligibility criterion on households.

¢ Kenyan school meal progranfs (Vermeersch, ?003), deworming prdjects (Miguel and Kremér, 2004): Ran-
domizing at the school level.

o [Angristefal. (2003) examine randomized voucher assignments for private school tuitions in Columbia. They
found increases in test scores and likelihood of finishing 8th grade, and reduction in repetitions.

o [Banerjee et al. (Z200p) use randomized sample of schools for remedial education.

IV Methods Based on Exogenous Treatment Assignment

Although we used the independencelyfwith any other variables[6) is actually derived
under a weaker assumption. Suppose that:

ElyoilDi, xi] = E[ypilxi] or (Voi, Yai &L Di)Ix; = (€oi, €17 1L Dy)Ix;. (10)

"9 The*black-box’ness of randomized studies has also been pointed out in Ito (2006) in the context of development
studies.
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Thefirst equality shows that even if coB[, yp;] # 0 or outcome is allowed to depend on par-
ticipation statudD;, we assume that participation is systematically explaines; bgneaning
expected value ob; is fully explained withx;, leaving only the random errors unexplained.
So the value oDj, the actual participation status ipbecomes redundant information in esti-
mating the mean ofp;, the outcome of under both treated; = 1 and untreate®; = 0, once
we condition onx;. This means that any systematic partyj that are correlated with; is
fully explained byx;. This assumption is called under different names:

e conditional mean independen@®@|ypi|Di, Xi] = E[yoilxi]) or mean independence con-
ditional onx;, as mean of/; is independent of treatmebY, once we condition o,
or,

e ignorability of treatmen(yg, y1i 1L Dj|x;), asD; does not play any role once we condi-
tion onx;, or,

e selection on observables (e, €1i 1L Djlx;), because the assumption thatis fully
explained byx, thusD(x;), is equivalent to an assumption that the selection into the
treatment is fully explained only by observables

All of three point to the same statistical assumption in the context of estimatin§® e call
this family of assumptions ‘exogenous treatment assignment’ because it i@ ples,] = 0,
as opposed to the endogenous treatment assignment which occur& jiheg] # 0.

(e0i, &1i 1L Dj)|xj means there can be some factors not capturedtmbe included irg;, €,
but they must be independent of treatment st&tiisuch as errors unrelated to ‘ability.” Then
@) becomes:

EYiIDi, Xi| = po + EleailDi, Xi] + (w1 — uo)E[DilDy, Xi] + E[D; (e1i — €oi) IDi, X,
= po + Eleilxi] + (1 — po)Di + Di (Elenilxi] — Eleailxi]) ,
under [ID), becaus€[epi|Di,xi] = &lepilx] and E[DjepilDi, %] = DiflepilDi,Xi] =
Di&lepilxi] under conditional mean independence ef,€; L Dj)xi. Thus, if we let
Elenilx] = ﬁDi we get the same result &3 (6) under a weaker assumption of conditional mean

independence.
An illustration of conditional mean independence is:

EYoilDi = 1,xi] = E[YailDi = 0,%] = E[yailxi] .

The expected value of a hypothetical outcoyge(not being treated) of the individual who
is actually treated is the same for that of the controls, once we conditio. 080 if we

*10 strictly speaking, the latter two are conditional independence which can be applied to entire distribution while
the first is mean independence which is only restricted to the mean.
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controlfor the diferences irx;, the (mean) outcome will be the same for the treated and the
controls, meaning we have independence in mean conditional &ng., without FONCODES
interventions, all the mean outcomes of villages will be the same between the treated and the
control (for the latter we observe), if we base our expectation on observgblémnder our
assumption, this also holds true fgf, or &[y.|Di = 1,xi] = &[yulDi = 0,%] = &[yilxi].
Given the conditional expectationsyf, y;; are the same for both treatment statudes 0, 1,
the actual value ob; becomes irrelevant in computing the conditional expectations.

As noted, under this assumpti@ becomes redundant once we conditiorxgrwe have:

ElyailDi = 1,x] = E[YoilDi = 0, xi]
indicating that the missing counterfactddlyoi|Di = 1,%;] can be constructed from the controls
by &[yailDi = 0,%]. Then, it is clear that if the above relationship is used for constructing

the mean counterfactual for the trea®@fli|D; = 1,%;], we are conditioning o,; = 1, or
estimating ATE on the treated:

ATE; = &[y1lDi = 1,x] - E[YailDi = 1,xi].

This can be estimated under conditional mean independence:

ATE; = &[y1ilDi = 1,%] — E[YailDi = 0,x%i].

Also note that if we are going to estimate ATE on the contrbls=£ 0), then we use

E[yiilDi = 0,xi] = &[yalDi = 1,xi],

thus we have ATE on the contr@lT K as:
ATEy = E[y1ilDi = 0,%i] = E[yoilDi = 0,xi],
= E[y1ilD; = 1,xi] — E[YailDi = 0,%i],

which is exactly the same &sT E;. This is logical since, under exogenous treatment assign-
ment, the opposite group can be used as the counterfactual after appropriate control of the
covariates.

In estimatingAT E;, we actually need only conditional mean independencegdgonot for
y1;i (because we want the counterfactuaygj:

E[YoilDi, Xi] = Eyoilxi] or (Yoi 1L Dy)Ixi.
In estimatingAT Ey, we need likewise:
EyiilDi, xi] = E[yailxi] or (v L Dy)lx.

So we are invoking different statistical assumptions when estimé&ting, and AT g, al-
though the values of estimates are the same.
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In practice, there are four methods that are available in estimating treatffects @inder
the assumption of exogenous treatment assignment. Thiiseidithe way to compute the
conditional means: regression, matching, propensity score, matching by blocking, and mixture
methods. We will also consider the tests of exogeneity assumptior]. See Wooldridgg (2002)
and[Tmbens (2004) for more detailed presentation from which | draw heavily. | will turn to
each of them in below.

IV.1 Regression Based Methods

Regression based method estimates the means of outcomes under no treatmdninder
treatmeniju; with regression, often using covariatesThus

AT E(X) = pa(X) — to(X)-
There are two ways to estimate meanéx), uo(X).

e Parametric method:
Yi = c+aDj +B'%i +8'Di(xi —x) + e,

with .
ATEX) =& +6 (X —X)

Xj term remains because we all&{D;x;] # 0. This can be derived by assuming a
linear function for€lep;|x] in @). Denoting&[xi] = u,, take:
Elenilxi] = Bpi(xi —p,)  with  Eleni] = Ex[Elenilxi]] = 0.
We have subtracted, from x; for E[epi] = Ex|[E[epilxi]] = O to hold. It can also be
seen as the additional control for the difference in covariates distribution. Then
E[YiIDi, xi] = po + Elenilxi] + (11 — 10)Di + Dj (Elexilxi] — Eleailxi]) ,

= (o — Botty) + (11 — po)Di + BoXi + (B — Bo)' Di (Xi — py)
so we haved = B, — By, C = o — Boty. B = Bo- One can obtain flexibility by including
polynomials inx; that are linear in parameters 6fep; |X;].

(11)

e Regression discontinuity desigiith a nonstochastic assignment rdilgs) of treatment:
an example is when we know the policy rubg £ f(s) for observables. This is a
special case of parametric method.

yi =c+af(s)+px +6f(s)x -x) +e,
Becausef (s) is a deterministic function, anglis assumed to be orthogonaldgohence

f(s) cannot be correlated with the error. A drawback is that any discrete changes in the
outcome which may be due to other causes are attributed to the chafh@d.in
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¢ Nonparametrienethod:
n - ~
i (Xi) — foi(Xi)
ATEX) = E _
i=1 n

with up(Xi, epi) being an unknown mean function to be estimated nonparametrically.
[[mbens (2004) points that regression based method relies on extrapolation of the control
to get the counterfactual of the treated, thus there can be bias introduced in extrapola-
tion if the distribution (support) of covariates ardgfdrent. To control for the bias, he
proposes to regress: 0N Xgi andx; — Xg; to include the average bias tedf(xy — Xo)

in construction of counterfactual.

Ho(Xi, €0i) = o [Xoi, & (X1 — Xoi), €i] -

One caution is that the means are not robust to outliers, thys d@ind X are very
different, the predicted bias term can be sensitive to its specification. One can use
kernel smoothing method, preferably with a local, not global, smoothing parameter,
in estimating the conditional mean to appropriately control for the limited overlap in
domain. However, one may have to cope with the dimensionality problem if the number
of covariates is relatively large, a feature that is common in nonparametric regression.
As a (parametric) substitute of nonparametric estimation, one can use a known func-
tion with reasonable flexibility inp, e.g., a choice of low-order polynomials i,
h(xi), .9.X% + X1X + X5 + - - . Then

fioi = BpXi + FHh(%).

The reason for these estimators to be consistent is that, conditioxalnoeans ofyp
are independent dd, thus can be omitted from the two separate regressiogs; @n
Xj.

o [Angrist and Lavy (2004): Maimonides’ Rule (class size40) of Babylonian Talmud enforced in Israel
gives a deterministic rule of the class size as a function of number of potential students, and is likely to be
uncorrelated with any other variables théiteat school outcomes such as test scores. For example, area 1
with 40 potential students will have 2 classes and area 0 with 39 has only one. Provided that the areas with
40 and 39 potential pool of students can be similar in other respect, it gives a good case for comparison. Thus
S1i = Swea1= 40 for alli in area 1 (treated), amg)j = Syeao= 39 for alli in area 0 (controls) and(40) = 1
andf(39) = 0 is an indicator of treatment assignment in the class size experiment.

o [Pitt_ and Khandker (199B): using the threshold of .5 acres as a deterministic eligibility (assignment) rule,
they estimate thefects of group-based credit programs. They compare the outcomes of eligible households
with ineligible households within the program village, conditional on other covanataed village fixed-
effects that control for the placement endogeneity. Morduch (1999?) points that the .5 acre rule is not strictly
enforced by the fiicials, thus regression discontinuity design fails in practice. See Armendariz-Aghion and
Morduch (2005) for details.

« [Ravallion and Wodon (200P) take community-level variables that central government use in allocating funds
as instruments for treatment of Food-For-Education (FFE) program in Bangladesh. This follows as the central
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government’s allocation should not be correlated with the household-level variables, simply because they can-
not observe them. This validates the use of central government allocation as instruments for household-level
treatment. This means that the authors assume the treatment eligibility (that the village is allocated funds) is
independent of any of household variables, as households cannot influence central government allocations.
This also implies an assumption of independence of outcomes and patrticipation statuses ofrediigiiiée
households, conditional on village treatment eligibility after controlling for the fact that village is treated

or nontreated, the decision on schoolimgrk should not differ between households across villages. That is,

in the absence of this program, household behavior should be the same between the treated and the control
villages. The estimation technique they used is not LATE, but probit with endogenous and censored vari-
able. This is a generalization of Smith and Blundell (1986) and uses regression residuals of participation
equation as a regressor in probits of work and schooling. Their estimation employs a clever strategy, how-
ever, they include household-level variablgss explanatory variables in household’s FFE receipt equation,
FFE; = yFFEV + 17'X; + Vi, which can be correlated with household unobservables that bias estimétes of
and residuali” The estimate of may not be biased given eligibility is orthogonal to household-level factors.
Although this is possibly done out of necessity that one needs the household-level variability that predicts
household’s FFE receipt, it invalidates the exogeneity test they perform in probits gfalookl, as it relies

on consistency of;” Variables included ixx; are household demography, marital status, religion, education,
and land ownership. Some of those may be correlated with unobservable factors that influence FFE receipt,
such as ability of members; should be confined to household-level exogenous variables, such as sex ratios
(partly endogenous if there is a preference for balanced sex-ratio), land inheritance, and religion.

. also uses number of school primary construction in a district as the identification variable in
explaining the education outcomes, based on the assumption that it is implemented across the board and
is not correlated with individual-level variables. She compares education outcomes of cohorts prior to and
after school construction period, for high-intensity (many school construction) areas and low-intensity (fewer
school construction) areas, and found a significant increase in mean enrollment and mean wages for the
post-intervention cohorts, especially for the high-intensity areas.

IV.2 Matching Based Methods

Matching based methods choose the counterfactual from the opposite treatment group that is
close to the original reference observation. Closeness is determined by evaluating the distance
between covariateg; andxg;. Distance is computed with the choice of metric, e.g., Euclidean,
Mahalanobis, etc. Even with the same distance metric, matching estimatordteanndihe
construction of counterfactuab;~ Once metric is chosen, researcher must decide on the num-
ber of matches for a given observation. Matches can be based on more than one counterfactual.
It is always the case that there is no exact match; then one can use the nmeaeggtbours,
or can use the kernel estimator (smoothing over certain rangg of the control fori, etc.

As noted earlier, kernel estimators have a problem of choosing the smoothing parameter, and
a potential bias if the distribution of covariatestdr significantly. There is little result on the
optimal choice of metric, and is still under investigatipn (Tmbens, P004). The most popular
estimator is propensity score matching estimator, which we will turn next.

One should note that matching based on metric and on propensity séereimiweight-
ing on covariates. Propensity score matching estimator weights covariates according to the
propensity score regression function. This givBiency in estimation provided that propen-
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sity score estimates are consistent, in particular, exogeneity of covariates in selection equation,
e.g., absence of measurement errors, omitted variables, fifeise etc. If not, it introduces

bias. Thus metric-based matching estimators are more robust than propensity score matching
estimator to the failure of exogeneity assumption.

IV.3 Propensity Score Based Methods

A propensity scor& is a probability of being treated. Usually, it is estimated using logit or
probit, by regressing treatment status on the set of covanigtgiven asG; = G (7x;), where
G() is a logistic function for logit models and standard normal distribution function for probit
models. For multiple treatment choices, one can use multinomial logit models. The merit of
using the propensity score based methods is that one does not have to ckidipaeasional
aspects of individuals to construct the counterfactual as in other matching estimators, but only
one-dimensional; (Rosenbaum and Rubin, 1983, see also the intuition givén in Inmbens,
[2004). This may imply that the kitchen-sink regression[al (11) may perform no worse than

the propensity score based method (Wooldridge, 2002), and moreover, the former is a one-
step procedure whereas the latter requires two-steps, lofiingecy. Another interpretation

of propensity score based methods is that controlling for the propensity score can be seen
analogously as controlling for the sampling weights in sampling theory. One controls for the
probability of being selected into treatment, and use matched counterfactual.

e An additional assumption: & G;j(x;) < 1 for all i (calledstrong ignorability of treat-

mentby[Rosenbaum and Rubin, 1983). This is, in other words, there is a substantial

overlap in covariateg; between the treated and the control, thus there is no point on
hen, Rosenbalim and

the support ok; that only a single treatment status is observed.

show that ATE is given by:

= vi(Di - Gi)

—
ATE(X) =n 2. é‘i(l_é‘i)

whereG; is estimated propensity score of treatment. This follows from an application
of the expectation operator on

(D-G)y=(D-G)[(1-D)yo+ Dyi] = Dy, - G(1 - D)yo - GDyx.
Taking an expectation on the above conditionak@ndD, which is allowed under the

conditional mean independence assumption, gives:

E[(D - G)yID, x] = D&lyalx] — G(1 - D)&[yolx] — GDE[ya|x].
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Then,taking an expectation ové&, we have:

&l(D - G)ylx] = Ep [E[(D - G)yID. x]| xi] .
= GEly1lX] ~ G(1 - G)&lyolx] — GZEly1l],
=G(1-G){&ly1lx] - Elyolx]}.

So

o [gj(l_——GC);)/ x| = ElyalX] - Elyolx] = AT E(x).

Note that:

ol b - e
_ 4 [B09E vl
I BTN

]:awwmn=awL

wherethe second equality holds becau®el y|x. Similarly,

@-D)y| [| . [.[@-Dyol || . [(-EDXDEolx]
Siql_qu]‘&kﬂl_quﬂ‘& 1-G() ]’

~ 6| L= 20E O 6 ety - ety
ThusATE is given by:
_ .| Dy (1-DJy
AT 5~ o |

andits sample analogue is:

—_ 1< (Dyi  (1-Dy
ATE‘HEAGuo‘l—Gao»
1< (D -Gy

N4 G(L-G)’

which gives thd Rosenbaum and Rubin (1983)'s estimator. This is a propensity score

weighted estimator: one uses the inverse of propensity score as weights to control for the

‘sampling’ probability.[ Hirano, Imbens, and Ridder (2003) use nonparametric estima-

tion of propensity score, namely, logistic power series, or the power series of covariates
to estimate the log odds ratio. They show that estimated parameter achieves the semi-
parametric efficiency bound jof Hahn (1998). As this estimator has weights that do not
add up to 1, one reweights and:

Z(U)liyi - woiYi)s

i=1

ATE=

Sl
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where

D 1-D;
wij = nG(Xl‘D) s woi = nl_C;‘L(X; :
igl G(k‘) ig‘l 176()‘(‘)

e Regression on propensity scorélyi|D; = 1, %] — E[yilDi = 0,xi] is uncorrelated with

VIDilxi]: A A =
yi = ¢+ aDj + BG; + 6D;i(G; — G)) + 8.

This is, again, taking expectations grconditional onx;, G(x;), while assuming linear
functions for&[yo|G(x)] and E[epilG(X;)]. Write

Y = Yo + (u1 — uo)D + D(e1 - €0).
Taking expectations given fixed,

E1yID,G(X)] = E[YolG(X)] + (11 — 0)D + D (E[€1IG(X)] — E[€olG(X)]) -

Assume linearity:
ENOIG()] = 6o +61G(x),  EleplG(X)] = dp[G(X) - c].
Then

ElYolG(X)] + (u1-40)D + D (E[e1|G(X)] - E[€lG(X)])

= G0+ (11— ) + 616 + 5[G0) —pal. D)

wheres, = 5, — 0. Thus the coefficient ob consistently estimates ATE.
¢ A simple (one-to-onepropensity score matching estimator
—— | 01' G — 00' G
ATE= ) =222,
; Ny
i=1
The procedure is to estimate propensity scores and obtain predicted propensity scores
for all individuals, then, for a given in the treated, choose the individuals with the
closest propensity score & to form a pair inuy s = Yig — ,@'xi’éi = a+ &g
andups, = Yoig —,ii"xi,éi = &g This follows since, under the conditional mean
independence assumption,

1

ElyoilDi, Xi, G(xi)] = Elypilxi, G(xi)] = { @+ Fxig for D; = { 0

BXg,

There is an important caveat in the propensity score matching estimators that have been

pointed out by Abadie and Tmbens (20006). Since there will not likely to be perfect matches

between the observadand the counterfactuglover thek-dimensional vectok; andx;, we
should expect a bias in matching. Under regularity conditions, the bias induced by imperfect
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matcheds shown to be of orde@,)(N‘%), and in the case of ATE the bias will be of order
Op(N, ¥) wherer > 1 is the relative \(is-a-visthe treated) speed of increase in the number
of controls used as the sample size increES¥ss the standard bootstrapped covariance esti-

mates may not be consistept (Abadie and Tmbens,]2005), they provide a consistent covariance

matrix estimator. It is also shown that, the smaller the nurklmércontinuous covariates used

in propensity score estimation, less the bias in estimated treatrfientse This follows be-

cause the use of greater number of covariates introduces greater biasedness, while the discrete
covariates have a greater chance of having perfect matches. Also, the greater the number of
matches per observation (in ATE), or, the greater the number of controls (ip) Afiere ef-

ficient the estimates will be. This result poses a potentially serious problem in application.
One may want to estimate propensity scoreféisiently as possible, so throwing in as many

covariates as possible. Hut Abadie and Tmbens (2006)’s results tell us that it is likely that we

are increasing the bias. This is similar tei@ency-bias tradefdby overfitting within data that
we see in forecasting.

« [Jalan and Ravallion (2003) uses nearest 5 neighbours to the treated holeelddldDenoting the health of
treated child ashy;, the estimated counterfactua is given by:

5 5
h0i=ZWijh0ij, ZW.J' =1
= 1

Wi; is the weight obtained from other procedure. The nearest neighlhds defined as the observatigrof
the controls that minimizes the squared odds raﬁﬁc&nce[f% B fg;oxg) 2

easily found. Matches were only accepted if the squared odds rﬁ’e’maﬁcejis less than 0.001 (an absolute
difference in odds less than 0.032). They used 2 levels of matching: villages and households. They used
nearest 5 neighbours for the household matching and nearest single neighbour for the village matching. They
discarded 62 out of 324 villages with piped water for no close match, 650 out of 9000 households with piped
water. The ATE estimator is given as:

. The four closest tg are

Ny

Ny 5
ATE(x) = Z‘Ui [hli - ZVVijhOij] = Zwi (hai - bo).,
i-1 =1

i=1
wherew; is sampling weight that sums to 1 in the case they oversampled somgf d@f is pure random
sampling,w;j = nil for all i). They also incorporated other covariatgshat may &ect health. They first run
a regression (using only the controls to avoid any contamination from the treatment):

hoi = BoXoi + Uoi,
then estimate ATE as:

ny 5 ny
ATE= Z wi [(hli - Boxai) - Z Wij (hoij —ﬁBXOij)] = Z wi (i - Poi) .
. £

i=1 j= i=1

where

5
hai = hai — Bokais foi = ZW.J' (hOij —ﬂq/:)xoij)~
=

. N
! Preciselyitis gt 2, 6¢[0,).
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o [Heckman Jchimura and Todd (199) use local linear kernel weight$\Vip that uses all observation in the
controls. Another popular weight which uses all observations in the control is the kernel of some density
function. Local linear matching is moréfeient at the boundary points (propensity scores close to 0 or 1).

IV.4 Mixture of Methods

A simple yet promising approach is to use matching and regression. This will control for
the diference in the distribution of covariates. Suppose that, using some metric or propensity
score matching, one obtain a matched paiyp&ndy;;. Since we observe the treated and the
counterfactual for it is extrapolated with the control, we get some imputed matched observation
Yoi- Then, simple matching estimator is givenyay- yoi = a + €. Adding to it some dierence
in covariates to control for the bias, we estimate:

Yii — Yoi = @ + B (X1i — Xoi) + €,

wherexg; is matched treated covariates fay. While[Imbens (2004) suggests usikg this
uses matchen; to gain dficiency (?). One can alternatively estimate

Yoi = B'Xoi + €,

to obtain imputed meagmy(x1;) using treated group’s covariateg and estimate:

ATE(X) = Z(yli = fio(Xa))-
i1

IV.5 Tests of Exogeneity

[mbens (2004) provides two tests of exogeneity (unconfoundedness). First is to test if the
ineligible and the opt-outs have the same characteristics for the outgopme

Yi L 1(z = 1)Ix,zD; = 0.

If the opt-outs have the flerent distributional features with the ineligibles, one cannot use the
opt-outs as the control. Eligibilitg, can be defined by availability of the social program. In
the above, conditioning onD; = 0 which holds forD; = 0 with z = 1 andz = 0, one tests
whether being eligible (opt-outs) is statistically independent with the outgpriesimple test
would be to regresg on covariates; and eligibility z, and test if the cd&cient on eligibility
is significantly diferent from zero. One can use higher moments or quantilgsfof further
examination.

The second te§t Imbens (20P4) proposes is similar in spirit. It tests if the treatffesit e
can be observed in lagged outcome, i.e., outcome prior to the intervention. If the treatment
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assignmenis exogenous, one should not logically expect any correlation between lagged out-
comes and treatment status. If th€elience in treatment status significantfieats the lagged
outcome, then the exogeneity assumption is likely to be violated, because outcomes tend to be
serially correlated, i.e., covlyyi_1] # O. It tests:

Yit-1 i Dilxi'[a Vit-2, " Yit-s, 4+

If the codficient onD; is not significantly diferent from zero, it is plausible that unconfound-
edness is not violated. One can use, for example, a vector of proxy vargbles - yit_s

for lagged outcomes as a substitute. With ffisient number of lags, power of the test can

be reasonably high. One needs, however, exchangeability and weak stationargtgarthe
conditional densityit_1lyit—2, - - - Vit—s does not depend ans. Stationarity can be tested with

other data sets. Another point to be noted that, although this test gives some insights, one can
use panel estimator if lagged covariaigs; are available. So one can use this test to see if
DID rather than methods based on exogeneity is necessary to estimate ATE.

Another test of exogeneity is given py Heckman and Vytlacil (2P05) in the context of IV
estimator. Note:
EYIG(xi) = p] = Elyo + D(ATE+ U1 — Up)IG(xi) = p].
= E[YolG(xi) = p] + E[DE[AT E+ u1 — WolG(x;) = p,D = 1]IG(x)) = p],
= E[YolG(xi) = p] + PE[AT E+ Uy — UlG(xi) = p,D = 1].

Thus withp > p':

ElyIG(xi) = p] - ElYIG(xi) = p]
= (p— P)ATE+ p&lur - WlG(xi) = p,D = 1] - p'&[ur — UolG(xi) = p', D = 1],
or
ElYIG(xi) = p] - ElYIG(Xi) = p]
p-p
= ATE
. PElUL — WlG(xi) = p.D = 1] - p'&fus — WolG(xi) = P, D = 1]
p-p
Hence&ly|G(x;) = p] is nonlinear inp if E[u; — u|G(X;) = p,D = 1] is not uniform overp.

So one can visually inspect to see if linearity holds by plotéifiggG(x;) = p] againstp.

V Bound-Based Methods
V.1 Bounding the Conditional Probability

When the exogenous eligibility assignment assumption does not hold, as often does not in
observational data, what should, or can, a researcher do? In the context of lacking the valid
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instrumentalariables, a popular way in dealing with the failure of exogeneity (exclusion, if
in the IV context) assumption is to estimate as if the assumption holds, and verbally state the
direction of possible bias. But is this the best we can do?

Another way to deal with the failure of exogeneity is to bound the estimate. Under the
bounds analysi§, Manski (199p), (1996) show that one cannot pin down the estimate to a single
number, but one can nevertheless bound the possible value of estimate. For example, note:

PrlyolX] = Pryo|x, D = O] Pr[D = 0|x] + Pr[yo|x, D = 1] Pr[D = 1],
Prly1lX] = Pry1/x, D = O] Pr[D = O|x] + Pr[y1|x, D = 1] Pr[D = 1)x].

Let us focus onyg. Prlyolx, D = 1] is counterfactual distribution, thus cannot be observed.
Nevertheless, one knows the lower and upper bounds of it, namely, 0 and 1. Thus

Prlyolx, D = 0] Pr[D = 0Jx] < Pr[yolX] < Pr[yolx, D = O] Pr[D = Ox] + Pr[D = 1[x].

Analogously, we have:

Prly:/x, D = 1] Pr[D = 1|x] < Pry1|X] < Prlys|x, D = 1] Pr[D = 1|x] + Pr[D = O[x].

Then, Prj1|x] — PrlyolX] is bounded with:
Prly1|x, D = 0] Pr[D = 0x] — (Pr[yolx, D = O] Pr[D = O|x] + Pr[D = 1|x])
< Pryalx] — Prlyolx] (13)
< (Pr[y1/x, D = 0] Pr[D = 0[x] + Pr[D = 0[x]) — Pr[yolx, D = 0] Pr[D = O[x].
(13) is whaf Manski (1995%) calls as the worst case scenario, because this is the widest bound
which must be satisfied for all binary treatment policies. The width of the bound is 1. Still, this
is better than the case without data where the bound can be anywhere befinah 1, or in
the width of 2. If the exogeneity assumption is suspicious and if we do not have instruments,
then we must base our analysis bnl(13) for credibility.

V.2 The Mixing Problem

An innovation of Manski (199%) is that he considers, under a binary treatment, the distribu-
tion of outcomeg, under ararbitrary policy m given the knowledge of Py§|x] and Prfy1|X].
This unspecified policy assigns individuals to treatment with an unspecified assignment rule

Dm. Thus:
VYm = Dmy1 + (1 — Dm)Yo.

The mixing problemManski considers is defined as: what can we know abowt,Ri[with
the knowledge of Pyp|x] and Prfy1|x]?

It turns out that one can bound the probability of an arbitrary paligyhat falls into some
outcome seB, or Priyn € BIX]. Sinceyp is a convex combination of; andyg, we have
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(yreB)N (Yo € B)= ym € B,and {1 ¢ B) N (Vo ¢ B) = ym ¢ B. These are the trivial cases
that give Prj, € Blx] = 1 and Pry, € B|x] = 0, respectively, and we do not have to worry
about them.

Instead, we consider the two polar cases. A treatment policy minimizgg PB|X] if the
assignment rul®, follows:

Y1¢B)N(YoeB) = Dm=1,

V1€B)NYo¢B) = Dp=0. (14)

Then the smallest possible value of W[ € B|x] when it is minimized by policy is
Pr[(y1 € B) N (Yo € B)|x]. Another treatment policy maximizes Ry € BJx] if the assignment

rule Dy, follows:
Vi1¢B)N(YoeB) = Dm=0,

y1€B)N(yo¢B) = Dn=1 (15)

Then the largest possible value of W[ € B|x] when it is maximized by policy is
Pr[(y1 € B) U (Yo € B)x]. So:

Pr[(y1 € B) N (Yo € B)IX] < Prlym € BIX] < Pr[(y1 € B) U (Yo € B)Ix].

Unfortunately, we do not know these bounding values, so the lower bound must be substituted
with the smallest possible value that is consistent with the marginalg®@@nd Prfy1|x], and
so does the upper bound which has to be replaced with the largest possible value consistent
with Prfyolx] and Prfy|x].

The lower bound is given by rearranging

Pr[(y. € B) U (yo € B)IX] = Prly1 € Bx] + Prfyo € BX] — Pr[(y1 € B) N (Yo € B)|x] < 1,

or
Pr[(y1 € B) N (Yo € B)Ix] = max{Pr[y1 € B|x] + Pr[yo € B|x] — 1,0},

where the maximum operator is necessary becauge BrB|x] + Pr[yo € B|x] can be less than
1. The largest possible value for the upper bound is given when there is no overlap bgtween
andyy overB, so Prly; € B|x] + Pryp € B|x]. Then:

max{Pr[y; € B|X] + Pr[yy € B|x] - 1,0}
< Prlym € BIX] (16)
< Prly; € BX] + Pr[yo € B|X].

This is the worst case bound in the mixing problem. It can be seen thayif ®@B|x] + Pryo €
BIx] < 1, the width of bound is smaller than 1. When we compare it with the width of 1 in

@3), we see that knowledge of the marginals provides the possibility of narrowing the width.
The improvment will be greater for the sBsuch that Prf; € B|X] + Pr[yo € B|x] is smaller.
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CoNTINGENCY TABLE OF|HECKMAN AND SmiTH (1995)

UNTREATED

Yo=1 Yo=0
a yi=1 Ply: = 1y0 =1] Prly: = 1,y0 = 0] Prly: = 1]
<
& y1=0 Pry: = 0,y0 = 1] Pry1 = 0,y0 = 0] Py, = 0]
Priyo = 1] Prlyo = 0]

A binary outcome example §F Manski (1997) givefy1] = Prly1 = 1] = 0.67 and&[yo] = Prlyo = 1] = 0.49.
An outcome is graduation, denoted with= 1 if graduated ang = 0 otherwise.y; indicates the outcome under
treatment anglp the outcome under no treatment. Then, what is the contribution of progrgfOnwhat are the joint
probabilities Prjp, y1]? There is an infinite number of combinations that are consisten&f§t] = Prly; = 1] = 0.67
and&[yo] = Prlyo = 1] = 0.49. There are several possibilities:

e Widest bound (Hofding-Frechet bounds). If treatment is assigned to attain the highest feasible graduation
rate that it is assigned only to individuals with = 1,yo = 0, and no treatment is given to individuals
withy; = 0,yp = 1 ory; = 0,yo = 0O, then graduation probability is4 Prly; = 0,yp = 0]. Conversely,
if the program is to achieve the lowest feasible graduation rate that it gives treatment to individuals with
y1 = 0,y0 = 1, and no treatment is given to individuals with = 1,yp = 0, then graduation probability is
Prly1 = 1,yo = 1]. Then we want the bounds that minimize bothyPet 0,yo = 0] and Pr; = 1,y = 1] to
get the widest bound. This follows because the upperbound is givenr-Brfl; = 0,yo = 0] and the lower
bound is given by Py, = 1,yp = 1], so minimizing Pry; = 0,yo = 0] and Prf; = 1,yp = 1] gives the most
conservative (or widest) bounds on graduation probability Prly. Thus

Priy1 =0,yp=0]=0 Priy1 =0,yo = 1] = .33
Priy1 =1yp=0]=.51 Pryp=1yo=1]=.16
are the joint probability distribution. So the highest graduation rate consistent with experimental evidence is
1 and the lowest isl6, or [.16,1].
o |f treatment does not harm graduation, onfPrf O,yp = 1] = 0, then

Prlys = 0] = Prlys = 0,yo = O] + Pr[y1 = 0,yo = 1] = Prfy1 = 0,yo = 0] = .33,

and
Prlyo = 1] = Prlys = 0,yo = 1] + Pr[y1 = 1, yo = 1] = .49.

Then Prf; = 1] is .67 so the interval is.49, .67].

e If yp are independent,
Prfy1 = 0,y0 = 0] = Prly1 = O] Prlyp = 0] = .17,

Pry; = 1,y0 = 1] = Prly; = 1] Prlyo = 1] = .33.
The bounds on Py[= 1] is [.33,.83].
The widest bound seems too large, however, this is the bound that is consistent with the widest credibility. The widest

bound can be narrowed if we add more assumptions. O

As seen in the example above, one can consider a variety of restrictions to narrow the worst
case bounds i _(16). An interesting restriction among them is the case when we know the
control proportion P, = Ox] = p. Then:

Pr[YD] = PrB/D|Dm = 1](1 - p) + Pr[yD|Dm = O]D.
This may not be realistic because it is almost impossible to prediBut it will be helpful in
the policy debate if we can see what bound will be obtained fdedint values op.
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Letting ¥ bethe set of all possible distributions &fj andy be its element, then:

Prly1|Dm = 1]€Tl(p)E‘PU{PrB]/_l]f_pMﬁ:we‘l‘}, (17)
and b L
r — p—
P{yo|Dm = 0] e‘Po(p)E\PU{M :z//e‘{’}. (18)
Given thaty € [0, 1], we immediately have the bound on each probability:
max{o,m’} <Py, € BIDp = 1] < min{l,w}, (19)
1-p 1-p
and
max{O, Prlyo € BL_ (- p)} < PHyo € BIDm = 1] < min{l,MpGB]}. (20)
Sincedistribution ofy, is (1 - p, p) mixture of Pr{;|Dm, = 1], Prlyo|Dm = 0], we have:
Priym] € {(1 - p)y1 + po : (Y1, ¥0) € Y1(p) X Po(p)} - (21)

Thus, combining[{(Z19)[(20)_(21), we have:

max{0, Pr[y1 € B] — p} + max{0,Pr[yo € B] — (1 — p)}
< Prlym € B] (22)
<min{l - p,Pry; € B]} + min{p,Prly, € B]}.

The maximum of lower bound is Bf € B] + Pr[yp € B] — 1, but can take the intermediate
values of Pry; € B] — por Prfyp € B] — (1 — p). The minimum of the upper bound is lowered
if 1 — p> Pry, € Bl or p > Prlyp € B]. Thus the knowledge op provides a possibility of
narrowing the bound il .(16).

It should be noted that, despite its usefulness, we may not be able tbUise (16YInor (22)
because experiments may onliffer an ITT estimator, not the marginals. Then one must base
the analysis o (13) which has the regrettably large width of 1. Another thing to note is that,
despite being critical on randomized experiments, the mixing problem needs the marginals
hence the perfectly conducted randomized experiments. So it should not be understood that
the use of[(IB) oi{d2) can serve as a substitute to a randomized experiment, but rather it shows
another way of utilizing the experimental evidence.

VI Instrumental Variables Based Methods

The instrumental variable estimator, or fbeal average treatmentfect (LATE), is an ATE
for the population whose patrticipation eligibility is changed from 0 to 1 (and among them,
from a nonparticipant status to a participant status). The key assumption is that the change in
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statusis induced only by the change in eligibility from 0 to 1, not by any other variables, and
such a change is orthogonal to (or independent of) any factors that affect ouf&8mes.
Assumption: eligibilityz of participation is randomly assigned.

(Yai» Yoi» D1i, Doi) 1L 7,

or equivalently,
Yoi, Di(z) L 7.

This means that eligibility is assigned independent of the possible outcpmegs, nor the
likely response®;;, Dg; of individuals to the assigned valae Conditional mean indepen-
dence ofyp; andD; givenx; is not necessary. Under this setting, an authority randomly assigns
each individuals the eligibility to participate in the program, and the individuals who are
eligible z = 1 decide on participatio®,;. Ds; is participation status if the person is eligible

z = 1, Dq is the participation status of the ineligible perspn= 0. We naturally expect

Doi = 0 andDy; = 1, nevertheless, there can be saargeting errorsthat:

e Type 1 error (exclusion error): eligible individuals do not particip&tg,= 0.
e Type 2 error (leakage erfé®): ineligible individuals participateDo; = 1.

In the case of type 1 error, one may not want to call it an error given that the individuals
voluntarily opt out. But in the context of poverty reduction, an eligible individual is a low
income individual, and the scheme which prompts them to opt out can be considered as having
targeting errors. To summarize, there can be four casegTabliil.

VI.1 Instrumental Variable Estimator under Homogeneous Treatment Ef-
fects

The most popular IV-based estimator is the Wald estimator:

LATE = Y2z~ Ya=0
D1 - Do

In the example dIERET, LAT E = 16902300 — 500,

Noting
Yi = {1 - D(z)}Yoi + D(z)Y1i,

*12 Theformer is called relevancy and the latter is called validity of instruradot D. See below.
*13 Should be better termed as an inclusion error.
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Table 1: Eligibility and Actual Participation Status

Classification of Treatment and Eligibility Statuses

TREATMENT

D=0 D=1 D,
% z=0 nottargeted t Ieal;age Doi
2 (type 2 error)
o
2 _ exclusion . _
2 z=1 (type 1 error) targeted and complied | Dy;
\{o) Yo Y1

A Numerical Example

TREATMENT

D=0 D=1 D, vz

-

5 z=0 80 20 0.20 1300

B z=1 50 200 0.80 1600
Vb 1200 1800

we have
&lyilz = 7 - &lyilz = 7]
= &[{1- D(2}yoi + D(9yiilz = z| - E[{1 - D(Z)}yoi + D(Z)yiilz = Z],
= &[{1 - D(@}yoi + D(@ysi] - E[{1 - D(Z)}yoi + D(Z)y1il ,
= &[{D(2) - D(Z)}y1i - Yoi)] »

(23)

where the second to last line follows from the assumptionythab;(z) 1 z =4 Thence

Elyilz = 7 - &lyilz = Z] = Elyai - YalD(2) - D(Z) = 1] Pr[D(z) - D(Z) = 1]
+ E[y1i - YoilD(2) - D(Z) = -1] Pr[D(2) - D(Z) = -1].

*14 Wooldridge’s derivation uses:
Di = 1(z = z)D(2) + {1 - 1(z = 2)D(Z) = D(Z) + 1(z = 2{D(z) - D(z)}.
Plugging inyi = yoi + Di(yi — Yoi), we have:
Yi = Yoi +[D(Z) + 1(z = 2){D(z) - D(Z)}](y1i — Yoi),
= Yoi + D(Z)(y1i — Yoi) + 1(z = 2){D(2) - D(Z)}(y1i — Yo)-
Taking expectations conditional @an= z (meaning, withg; = zimposed), we have:
Elvilz = 2| = E[yoilz = 2] + E[DE)(y1i - Yoi)lz = 2] + E[{D(2) - D(Z)}(yai - Yoi)lz = 2],
= &[yai] + E[D(@)(yai - Yoi)] + & [{D(2) - D(Z)}y1i - Yoi)l,

where the last equality follows becaudéz), yp; 1L z. Taking expectations conditional @an= Z/, we have:

Elyilz = 7] = Elyilz = Z] + &[D(Z)(yai - Yoi)lz = Z],

= E[yoi] + &[D(Z)(y1i - Yoi)] -

Then we will get[ZB):

Elyilz = 2 - Elyilz = Z] = E[{D(2) - D)} (yi - Yoi)]-
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Figure 3: A Graphical lllustration of Wald Estimator
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The next assumption we use is callednotonicity

Dii = Di, (24)

meaning, ifi participated when not eligible, participates when eligible. This is termed as

‘monotonicity’ by[Tmbens and Angrist (1994) becaul3é monotonic ire for anyi, which can

also be termed asniformity (Heckman and Vyflacil, 2006) as it precludes the noncompliance

that eligibility decreases the likelihood of participation (or vice versa that ineligibility increases
the participation). Note that this implies, by letting- 1,7 = 0:

z =0, D=1 (leakage) = 2z =1, D;=0(exclusion),
{zi =1, Dj=0(exclusion) =» 2z =0, D;=1(leakage)

Thus exclusiorg; = 1,D; = 0 must not happen for individuals with experiencing leakage
z = 0,D; = 1, and vice versa. |V estimator allows targeting errors, but the same individual
cannot experience both types of targeting errors upon changes Riausibility of such an
assumption cannot be tested.
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Undermonotonicity,D(z) — D(zZ) > 0 thenD(2) - D(Z) = 1if D(2 = 1,D(Z) = 0. So:
PriD(z) - D(Z) = 1] = Pr[D(z) = 1, D(Z) = 0] = Pr[D = 1|7 = z] + Pr[D = 0|3 = Z]
=Pr[D =1z =2z]-Pr[D =17 = Z].
Thus we have:

8lyilz = 7 - &lyilz = 7]

S[yli - inlD(Z) - D(Z) = 1] = PI’[D =1z = Z] _ Pr[D =1z = Z’]

(25)

(Z3) shows that LHS depends on the particular values tiierefore nor does the RHS. Helck-
[man(T997) argues that, given that it depends on the particular valugsanél is ATE of
unknown subpopulation, LATE does not give an answer to an interesting policy question. Al-
though his exposition is correct, one can always check the characteristics of subpopulation
whose choices are affected by the valug pfind it gives the netféect on the economy of
certain intervention. This is still an interesting question being answered.
Then:
Elyilz] = Elyailz] + E[D(@)(y1i - Yo)lz] + zE [{D(z) - D(Z)}(y - Yoi)lz],
= &[Yoi] + &[D(@)(Y1i — Yoi)] + z2E[{D(2) — D(Z)}yxi — Yoi)] ,

becausepi, D(z) I z. Then, taking differences:

Elyilz = z] - Elyilz = Z] = (z- Z)E[{D(2) - D(Z)}(yai — Yoi)] - (26)

It will be clear that LATE derived in this fashion relies on particular valueg oExpanding
the expectations,

E[{D(2) - D(Z)}(y1i — Yoi)] = E[y1i — YoilD(2) - D(Z) = 1] Pr[D(2) - D(Z) = 1],
as we assume monotonicity. Noting thatP@#) — D(z) = 1] = Pr[D = 1|z = z] - Pr[D =
1z = Z], we have:

1 Elyilz = 2] - &Elyilz = 7]
z-7ZPiD=1z=2z]-PrlD=1|z = 2]’

E[ywi — YailDi(2) - Di(Z) = 1] = (27)

(Z32) is sometimes called thi¥ald estimator It is the same a$ (25) with— Z = 1. Note that

the Wald estimator only exploits the variation induced by changediie, that are random by

assumption, which ensures zero correlation betw@emwith unobservables. So it is ATE of

unknown subpopulation whose choice is changed by variation in IV. It is also noteworthy that

LATE is a function of particulag value by construction, even after dividing it with- Z. This

is in contrast with the IV estimator which is not a functionzpés we will examine below.
Consider an instrumental variables estimatoDpn

yi=c+aDj+ €,
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An instrumental variable estimator using eligibilityas an instrument for participation gives:

%M—D@—7

ay = (dz)y'z= In: — ’
_Zl(Di -D)(z -2)
i=
whered = (Dyj, -+ ,Dn), 2= (21, ,Z0)', Y = (Y1, - - - , ¥n)'. In the population moment terms,
covly,Z _ cov[D,Z = cov[ez] _

ay

s

~cov[D,7  cov[D,7 cov[D,z]

cov[e,z] = 0,

which is called thevalidity requirement of an instrumental variable, while another requirement

cov[D, z] # O,

is called theelevancyrequirement.

Although the IV estimator is attractive due to its ability to give the unbiased ATE estimate
under weak assumptions, there are at least two drawbacks. First is that it measures the av-
erage treatment effects of undefined subpopulation. It is ATE of subpopulation, or marginal
population, whose choices were changed due to changes in eligibility. If it is the school meals
program, itis the marginal households in the sense that they have undernourished children who
will change their schooling choices due to school meals. It is not likely to be the ATE, or the
treatment ffect averaged over the entire population. However, this may not be a weakness if
we want to know the féects on the subpopulation who have undernourished children in their
home, or the subpopulation who are in need of public assistance to have their children stay in
schools. In addition, they can always compare the characteristics of marginal population with
others to see on which population the policy is working. The second drawback is that we can
rarely find the valid IVs. So most often we opt to randomize the eligisfywhich then is
subjected to the same operational criticisms for randomized trials. One may wish to compare
randomized estimator and IV estimator and see how the estimates change. These should be-
come closer to each other if the share of so-called ‘unknown subpopulation’ becomes larger.
[Oreopoulos (2006) shows the UK and Northern Irish case study orffésgiseof compulsory
schooling law where a significant portion of population wisated by such legislation. The

estimated marginal returns to schooling is similar to the US estimafes of Angrist and Krueger
[(T990) where only a small fraction of population wasaféd.

“15 Mostresearchers use randomized eligibility for instruments. See Bitler, Gelbach, and Hoynes (2006) who use
data of Connecticut’s Jobs First program, fnd Abadie, Angrist, and Tmbens [(2002) who use JTPA data.
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o [Angrist (1990} uses the Vietnam War draft lottery numbers as randomly assigned eligibility for military ser-
vice, which assigns the service to individuals with low lottery numbers, and estimatéedson subsequent
incomes. They found the veteran statusfteet negatively their incomes.

o [Angrist and Krueger (199p) use birth date as eligibility: in some US states, one cannot drop geh& he
is below 16 in August 30. So students born in September 1st and August 30 Hésrende of 1 year of
compulsory education, whose assignment should be random given the birth dates are random. They divided
birth dates into 4 quarters, and compared with the first (beginning from Sep 1) and the last three quarters
using Wald estimates. They found LATE to be significantly positive.

o [Angrisi et al. (2007) use randomized voucher assignment as instruments for using the vouchers, as only
90% of households used them. They found significant increase in grade attainment, test scores, likelihood of
finishing 8th grade, and a reduction in grade repetitions.

« [Banerjee etal. (200p) use Wald estimator for tfieas of remedial education on test scores. Randomization
at the school level for getting remedial education teachers. They find significant improvement on scores,
especially for underachievers, and significant cost-effectiveness over other interventions.

VI.2 Instrumental Variable Estimator under Essential Heterogeneity

[Heckman (1997), Heckman and Vyflacil (20p5), (2906), and other Heckman papers show

an important result that LATE and IV estimators are valid only when the treatment effect is the

same for all individuals, or when the individuals do not take into account the treatifiectise
when patrticipating. This is seen by introducing #esential heterogeneithat for different
individuals, treatment eftta; is generally diterent:

Vi =C+/Ji(Xi)+aiDi+a, (28)
We assume a separable (between mean and disturbance) model:
Yoi = to(Xi) + Uoi, Yai = pa(Xi) + Ugi,

S0
Yai — Yoi = H1(Xi) — po(X;) + Ugj — Ugi = @ + Ugj — Upi,

wherea = u1(X) — po(Xi) is ATE. Plugging this into
Yi = Yoi + (Yai — Yoi)Di,
gives [28):
Yi = po(Xi) + (@ + Uzi — Ugi)Di + Uoi = po(Xi) + aDi + Uoi + (Uzi — Uoi) Di.

where we denotedo(x;) = ¢ + u(X;) (with X; does not include intercept) ang; = . So the

coefftienta; on Dj is:
aj = a + Ugj — Ug;.

As can be seen, the treatmeffieet model under essential heterogeneity can be cast in a ran-
dom coefficient framework. It can also be cast in the fix@det framework, if the perceived
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individual gain from participatioru;; — Ug; is a function of the unobserved individual fixed
effectc;.
In the population moment terms, 1V estimator of ATE gives:

covlyi,z] _ covleD;,z] N CoV[UWi + (Uzi — Uoi)Di, 7]

N oD, z] ~ cov[D,z] cov[D;, z] ’
cov[(uy — Uoi)D;, z]
- cov[D;, z]

So consistency of IV estimator rests 8%% = 0, or that (11; — Ug)D; is not a function

of z. Denoting the individual gain asu; = uy; — Ugj, the denominator can be rewritten as:
cov[AuD;, z] = E[AuD;z] - E[Au Di]E[z],
= & [&E[AuiDi|z]z] - E[Auy DilE[z],
= &, [E[AuDi|z]z] - &, [E[AuyDilz]] E[z].

This can be zero i€[Au;Dj|z] = E[Au;D;] by the second line, or i€[Au;Di|z] = 0 by the third
line. Since&[Au;Dilz] = E[Au;Di(z)|z], we should more likely to see stronger correlation
between individual benefitu; = uy;; — ug; and participation undeg; = z, which is consistent
with our assumption of monotonicity th&it(z) > Di(Z). So the first condition should not
hold. The second condition also does not hold[ifu;|D;, z] # 0 because:

E[AuiDi|z] = Epyz [Eaup A AUID;, z]1Dilz] .

[Heckman (T997) argues that it is unlikely ti&ftAui|Di, z] = 0, given individuals make par-
ticipation decisions based on individual gains. Condition &jau;|D;, z] # 0 is highly plau-
sible, and under this, we should have coy[¢ ug)D;, z] # 0. This covariance will be zero if
Ay L Di|z, or weakelE [Aui|D;, z] = E[Aui|z] suffices. The latter is analogous to the ‘ignor-
ability of treatment’ and ‘selection on observables’ only thailays the role of covariates

in exogenous treatment assignment case.

So it is crucial that& [Au;|D;, z] = E[Aui|z] for an IV estimator to be consistent under
essential heterogeneity. Yet another way of describing how this condition means, or to under-
stand the consistency requirement of IV estimator, is to notewhat up(X;) + up; where
up(xi) is a function only of;:

Ely1i — YoilXi» z, Di = 1], = p1(Xi) — po(Xi) + E[U1i — UoilXi, z, D = 1].

As argued[ Heckman (1937) points that the third term would not be zero. He shows that the
conditional density oAu; givenx;, z, andD;, f(Au|x;, z, D; = 1), which we use in computing
E[Auilxi, z, Di = 1], will be dependent ol;. UsingD* as a latent index variable for program
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participationsuch thaD = 1 iff D* > 0, and suppressing for notational simplicity, we have:
Pr[D; = 1z, Au] f(Aulz) f(z) = fl(D* > 0)f(D"(z, Au) f(Auilz) f(z)d D",
= fl(D* > 0)f(D*,z, Au;)dD",
- f 1(D" > 0)f (AuID",2) f(D'lz) f(z)dD",
- [ teup - 12)f@ R
- f(auiD = 1.2)1(@) [ 10D’

= f(AulDi = 1,7)f(z) Pr[Di = 1z].

Third to the last equality follows becauBe= 1 for D* > 0, so we can condition oD = 1. By
the Bayes' rule,
Pr[D; = 1|z, Au] f(Aui|z)

f(Auilz, Di = 1) = PiD; = 1[z]

(29)

Thus for f (Aui|z, Di = 1) = f(Au;|z), we need:

Pr[D; = 1iz, Au] = Pr[D; = 1|z].

Only under this case, an IV estimator gives a consistent ATE estimate. This is unlikely to hold
since individuals make participation decisions based on the individual gajf5® [Heckmah
points out that zero correlation betwaenandD; is ‘a behavioral assumption’,
and thus ‘cannot be settled by a statistical analysis.’

[Heckman and Vytlacil (200b) show that the LATE estimator is a weighted average of what

they call themarginal treatment effect, which is a treatmefiieet conditioned oG = p, which
is given by:

MTE £ &lys - Yolup = p] = 2EMEG-12=0],

Notethat this is a diterential version (limit case by flerentiating from the right) of Wald es-
timator evaluated gb. This is derived as follows. Assume a latent varidbighat determines
the participation:

*® > _ 1,
D_yD(z)—v{< 0 = D_{O_

*16 |v validity does not hold generally eveéifAui|z) = f(Au;), unless another condition holds: Br[= 1|z, Aui] =
Pr[D; = 1jz] or D; is independent ofAu; conditional onz or D; 1 Aujlz. (29) shows that even if the
instrument validity holds for the marginal densitgAui|z) = f(Au;), the density ofAu; conditioned orD; and
z, f(Aui|z, D = 1), still generally is a function of, hence correlated with;

Pr[D;i = 1z, Au;i] f(Au;)
PDi = 1/z]

= f(Auylz, D; = 1).

182



We have assumed a separability between regressors and disturbance term in the above.

above inequality can be rewritten by using the distribution funckigna monotonic transfor-
mation, as:

uo(Z) =V = Fvlup(2)] = Fu(V) = G(Z) = Up,

where we denote@(Z) = Fy[up(Z)] andUp = Fy (V). Note by constructiotp < uUlo, 1].
EYIZ = 7] = E[yIG(2) = p],
=&[Dy1 + (1 - D)yolG(2) = p],
= &[yo] + E[D(y1 - Y0)IG(Z) = p],
= &[Yo] + p&Ely1 — YoID = 1],
P
= &[yo] + f &ly1 - YolUp = up]dup.
0

O, G(D=1
£ =1jz)=
U (8p 2el - 8[)/1 _y0|UD = p]-

They show that LATE estimator is a weighted average of MTE:

1
a|v=f w(X, up)MT E(X, up)dup,
0

with
E[I(Z) - E[AD) X =x,G(Z) > up] Pr[G(Z) = up| X = X]
cov[J(2),G(Z)| X =X] ’
G -8R@)IX =X [, fea(g. jIX = x)dgd]
cav[J(Z),G(2) X = X] ’
S| i fen(@3(@) = 1. X =dg| (i - EL@)IX = X)) fo(i1X =d]
- cov [I(2), G(Z)[ X = X] :
_ JPIG(2) > upl 3(2) = i, X = X1 ( - @)X = X) fo(iIX =x)d]
cov[J(Z2),G(Z)| X =X] ’

w(X, Up) =

The

They also show that ATE is another form of weighted average of MTE. Weights used in LATE

are generally dferent from those used in ATE, so they discredit LATE as not being meaningful

for a treatment #ect parameter. They argue that LATE is only meaningful for poligat
parameter which measures thet effect of the policy, rather than thigosseffect such as the

treatment effect. They also show that the weights used in LATE estimator, although sum to

1, are negative at somg if J(Z), any function constructed with a vector of \&that is

used for IV estimation, is nonmonotonic in (or being negatively correlated with) propensity

score: if the probability FrG(Z) > up| J(Z) = j, X = x] is negatively correlated with(Z) for

a certain value ofip, the numerator ofu(x, up) becomes negative. This happens if there is
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essentiaheterogeneity in participation that people may enter or exit the program to a given
change inZ 0 One thus needsniformity (or ‘monotonicity’ in[Tmbens and Angrist (1994)

sense) in propensity score that a greater valu¥ 6§ leads to a greater propensity sc@€)
for everyone. If the propensity score is used as instrum#@ts = G(Z), then all the weights
will be positive.

The issue that instrumental variables give an aggregateflafeint estimates of fierent

subpopulation was well recognized, because it was pointed ¢ut by Heckman and Robp (1985),
[(T986). A similar, yet not using MTE, result is found[in Tmbens and Angrist (1994, Théorem
[2). An analogous proposition has been derived ahead of tifie by Angrist, Graddy, and]Imbens

[(2000, Theorem T, P) in a continuous treatment intenBity R, case that shows an IV

estimator in simultaneous equations models is a weighted average of MTEs (although they
do not use the term ‘MTE”).

it = [ & 252 oy < 6 < 0@ | w(E)D,

D(Z) . B .
_ f W(B)MTE(B, Z)dD,
D(Z¥)

with the weights being given by the ratio of probability of particular treatment inteDsity
the total sum of probability over entire support of treatment intensity, or:

w(lj) _ Pr[D(Zk) <D< D(ZI)] _ PI’[D(Zk) <D< D(Zl)]
J57PID(Z) < r < D(2)]dr DD(S)) PID() < < D(z')]dr’

wherezk andZ are indexed aB(z¥) < D(Z') with k # |. [Angrist, Graddy, and Imbens (200,
[Theorem 2) also notes that, under many instrument valites - , zK},

K-1
zk,zk+1 _ zk,zk"'l
Qy = Z/lkﬂa’lv
k=1

with weights

o |G - 62| 2k« £.2) [32) - el3(2)]]
T SEEGE™) - 6] 2K 12) [3@) - eI

wheref,(Z) is the probability mass function &. Ax.; can be negative if the order of instru-

mentsz¥, Z are such that, for som# andz*+!, J(Z) andG(Z) are nonmonotonic. This weight
is discrete version 4f Heckman and Vyflacil (2005)’s weight and the condition for nonnega-

tivity is exactly the same. However, what the 1V estimate averages over is IV estimates of

subpopulation, not MTEs as(in Heckman and Vyflacil (ZD05).

17 This also happens even under treatmefeea homogeneity when participation decision is nonseparable in Vs
and disturbanc®* = up(Z,V).
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Figure 4: A Graphical lllustration of Quantile Treatment Estimator
cumulative frequency

1

control treated

Given both sides recognize the problem from the beginning, it seems as if the controversy
is taking too much toll in terms of excessive arguments, and it might have become a source
of confusion. They are pretty much in accord that IV estimator is of limited usefulness when
there is essential heterogenefty. Chamberlain (1986), Heckman and Robf [1985),[(1386), Im-
[bens and Angrist (I994), among others, all point to the fact that IV is not suited under essential

heterogeneity, simply because the instrument loses validity. Most fruitful debate may be found
in pointing out that independence is too strong for mean statistics but conditional mean inde-

pendence sufficels (Heckman, 1999, B31), and that IV estimators and LATE estimators are all
weighted averages of MTE (Heckman and Vytlacil, 2005).

As the standard IV estimate gives the weighted average of subpopulations, it is natural to
consider the 1V estimation of QTE, or IV estimation of nonseparable functions, which we will
turn next.

VIl Quantile Treatment Effects

Most of regression and propensity score based methods estimate the mean impact. However,
as[Abadie, Angrist, and Tmbens (20P2) and Bitler, Gelbach, and Hoynes (2006) show, they
may miss some important heterogeneity of the impacts over the entire population. Quantile

treatment effect (QTE) estimates the impact on the quantile of the population. Suppose that we
are interested if quantile. Thend quantile treatmentféect is given by:

Ap(X) = gp(XID = 1) — gp(XID = 0),
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wheregy(x|D) is an outcome function at quantidegiven covariatex and treatment statu3
(Ooksum, I97W). That is, we compare theguantile of the treated anglquantile of the con-
trol. With appropriate construction of the counterfactual (the control), there is nothing wrong
in directly comparing the quantiles. Bitler, Gelbach, and Hoynes (2006) simply compare the
response at the specified quantile of treated and control distributions in randomized experi-
ments.

Average treatmentfiect is related by:

ATE(x) = fo ' Ag(x)de.

Quantile regression is a well-established estimation technique and its computation can be done
using standard statistical programs sucfReend its packag@guantreg, or using the algorithm

of[Buchinsky (199952

VII.1 Quantile Treatment Effects under Exogeneity

shows theficient semiparametric QTE estimator and ifa corvergence to
asymptotic normality. QTE, or overall quantile treatmeffitets (OQTE) in his terminology, is
identified in a two-step procedure. First, one estimates the propensity score nonparametrically.

*18 Quantileregression is derived as follows. Consider

min| > (1= o)y —m+ )"y —m

yi<m yizm

=min
m

D A= -m+ Y ey -m)|,

yi<m yi=m

ZPH(Yi - m)} ,
i1

wherepy(a) = a- (0 — 1[a < Q]) is called acheck functionthus

=min
m

pe(@) =[aa<0]-(@-1)+[aa>0]0=(1-6)a-1[a<0]+6a -1[a>0]>0.
So the problem is:
miné oty ] =min| [ -y - myrtay+ [ oty-mio]
FOCis:
A=0)- [=m) O,y + [ A= OFOy-0- Ty =m0, - [ ofaty=0,
thus -
-0 [ty -0 [ toy=o

or

0 1-6
Thenwe see that* = quantilg(y), where quantilgy) isy such that Pgf < m*] = 6. (y such that lower-tail
probability is equal t@.) 6 = % wherem* is median, a median LAD estimator, is the special cagemqfantile.

Pry<m] _ Pdy>m]
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The approach he proposes is to follpw Hirano, Imbens, and Ridder (R003) and estimate the

propensity score nonparametrically. Second, using the estimated propensitfsécdrene

solves: n
min E Wi polYi — q
{q;z] - 19 G(M 5)

where the weights are

1-D; ~ 1 D
n

o = 1
@0 = 18

VII.2 IV Estimation of Quantile Treatment Effects

Using the monotonicity assumptidn, Abadie, Angrist, and Tmbens (2002) propose a two-

step, IV procedure for binary treatment that applies the weighted quantile regression technique

of[Newey and Powell (199D). The instrumerit randomly assigned eligibility that explains

the participation statuB,, with the IV ‘monotonicity’ assumptiod; > Dg. It solves, for a

giveno:
argmin  E[py(y — ayD — ByX|D1 > Do)]

{80}
Their two-step procedure requires in the first stage to estimate the propensity score which is
used to construct the complier finding function:

k=1- 1D_(nloz)z()) - (iO’&))Z, mo(x) = Pr[z = 1/X].

Notethak =1ifZ=D=0o0orZ=D=1,andk<0ifZ=0,D=10orZ=1,D =0, hence
it finds the complier withk = 1.[Abadie (2003) has shown that

&[po (y - 24D - BjXID1 > Do)| = 5576 [kon (¥ - 2D — Byx)]
Then one can use the estimateals"weights in weighted quantile regression.

argmin & [&pg (y — gD — BX)].
{@o.o}
Since this is an example of M-estimators, it is straightforward to derive the robust covariance

matrix for inference.

[Chernozhukov and Hansen (2005) show the moment conditions that can be used in nonpara-

metric estimation of quantile treatment response functions, which they cahstramental
variable quantile regression (IVQR)odel:

Prly<g(xD)|Z]=6  and Py < qu(x|D)| Z] = 6.

A sample analogue is given by a vector of empirical moment conditions:

n

13" [0y < @Dy + Byxi] - ]

i=1

)Z(: ] = op(n"2).
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A distinguished feature of their methods is that IV monotonicity assumption is replaced with
rank similarity condition of an index that captures the heterogeneity in outcomes. Instead
of IV monotonicity, they assume the net outcome gain for a given ‘ability’ in the treatment
is known ex anteup to a distribution that is common to everyone. Under this assumption,
the estimated QTE has an interpretation as the treatnféattérolding the distribution of
unobservable, or the mean of unobservable, fixed. Unfortunately, one needs a similar condition
as IV monotonicity for global identification of parametBi.

Another feature of IVQR is that one does not require independence between the instrument
and selection equation disturbance terms, unlike other IV estimators or other estimators relying
on selection on observables. IVQR assume that decisions are explained by a general function
D(xi, z, Vi) wherey; is a random vector, allowing an arbitrary relationship betwgemndyv;
in selection. This is helpful when IVs are measured with errors hence become correlated with
selection errors as [n Hausman (1377). Another instance &dhe: 2 of [mbens and Angrikt
[(T994) that eligibility assignmers; may be random yet with whichfiicial the applicants
must work on application mayfi@ct the participation decisioD;. This works analogous to

the measurement error problemg: = 1 for eligible applicants may actually be less than 1

if assigned to an obnoxious orfficult official. Their method also allows estimation over
entire distribution of compliers and allows discrete and continuous treatment variables, unlike
[Abadie, Angrist, and Tmbens (2002) who consider only the binary treatment case.

[Chernozhukov and Hansen (2004a) provide an application of their methodology to effects

of pension plan on wealth accumulation. Despite being flexible and not requiring IV mono-

tonicity,[Chernozhukov and Hansen (2005)’s method requires an untestable assumption of rank
similarity in the unobservabl¢. Chernozhukov and Hansen (ZP044) use Abadie, Angllist, and
[[mbens (2002)'s estimator to check the robustness thereby indirectly asserting the plausibility
of rank similarity condition in their application] _Chernozhukov_and Hansen (2p04b) illus-

trate a simple, two-stage computation procedure to estimate the linear quantile function using
instruments for an endogenous regred3dior a givent:

1. Define a grid ofe;, j = 1,---, J}. Choose the IV functiow(x;, zil). Choose weights
Vvi(r). Recommended choices are projectiorDpbn x;, z; for ¢(xi, z|7), andvi(r) = 1.

*19 [ChernozhuBv and Hansen (2006)’s TueoreR shows that global identification condition required for unique-
ness of parameter estimates is monotone likelihood ratio condition that Iikelihood%)atiisincreasing ing.
This indicates that eligibility increases the likelihood of being treated relative to untreated, which is similar
but different from IV monotonicity, that is based on distribution function rather than density function, used in
LATE.
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Thenrun weighted quantile regression to estim@t&y;) andy.(«;):

1 Z Or (yi —ajDi - B'xi — yo(Xi, zi IT)) Vi(7).

n i=1

Storey;(a;) for eache;.
2. For eachy;(«;), find @ such that

52( i
min ’}/‘r( J)
{aj) ax, zi|r)

with a(x;, zilt) = E[#(xi, zI7)?].

VIl Before-After Methods
VIIl.1 Difference-in-Differences Estimation

In words, the assumption emloyed are: omitted variables are fixed variables, either in level
or in first-difference. Conditional mean independence is not necessary, but one needs the
homogeneous treatment effect for all individuals.

Difference-in-djferences estimatds:

ATE(X) = i AYiit (AXit) i AYoit (Axit).

i=1 Ny i=1 Mo

with
€t = G + €,

whereeg; is a random error with mean zero satisfies conditional mean independgngé (L
(et, &t-1)IXit, Xit_1. AYpit (Axit) is predictedAyp;; in the regression afypi; on Axj.

A convenient way is to embed in the regression. Participation process is allowed to include
the fixed-éfectc; and idiosyncratic errov; that should not be correlated with other idiosyn-
cratic errore;, and we will write it as:

Dit = Dit(Ci, Vit, Xit)-
Under this, we allow for a linear time trend:
Yit = C+ aDit(Ci, Vit, Xit) + yt + B'Xit + (Ci + &¢).
Note, when program is introduced in tirhét is Dy = 1 andD;;_; = O for the treated, thus
ADit(ci, Vi, Xit) = Dit(Ci, Vit, Xit) — Dit-1 = 1 for the treated,
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andADj (ci, Vit, Xit) = 0 for the controls. Noté\t =t — (t — 1) = 1. Then,

AYit =y + @ADit(Ci, Vit, Xit) + B1ADit(Ci, Vit, Xit)AXit + Bo[1 — ADit(Ci, Vit, Xit)] AXit + Aex,
=y + aDit (G, Vit, Xit) + B1Dit (Ci, Vit, Xit)AXit + Bo[1 — Dit(Ci, Vi, Xit )] AXie + Aey.

OLS gives consistent estimates if,(g) 1 (e, &t—1)IXit, Xit—1-
Further, if
ﬂl = ﬂO’

which is frequently assumed in the simplest applications of DID estimator, then:
Ayrit — AYoir = @ + Aeyjt — Aeit.
Taking expectations, we have:

E[Ay1it] — E[AYoit] = a = ATE

In this case, ATE estimator is;

If we omit some variables ofx;; from the regression whef, # B,, we can still estimate
ATE consistently if changes ir; are uncorrelated witk;. This holds, for example, when
is constant through time and itéfect onx;; is also constant through time, thugfdrencing
eliminates them.

The identification conditiond, vit) 1 (e, €it-1)IXit, Xit—1 precludes correlation between
Vi and €, 1) through common, unobservable time-varying shocks. For example, a health
shock realized irt or t — 1 to the family member may prompt a person to participate the so-
cial program while the shock mayfact the outcome of intereg in a time-varying wa§z®
Another example is that a weather shock which is omitted in the regres$emtsaboth par-
ticipation Dy, andyy. This can be partially resolved for the weather shocks at the village level
by including the village dummies in the regresi&hAnother important caveat is that, when
there is a serial correlation (residuals are correlated through time), there may be a substantial
bias in estimated standard errors but using the heteroskedasticity-consistent covariance matrix
reduces it. See Berfrand, Duflo, and Mullainathan (2004) for details.

*20 |f its effects on outcomes are time-invariant, then we can use the fikect-enodel.

*21 Including the residual of participation equation, as done in Smith and Blundell manner, does not work because
one cannot consistently estimate participation due to the presence offfizets ERavallion and Wodon (2000)
makes a mistake of including the endogenous variables of households. If we have three periods of data, using
Xit—2 @s instruments that is correlated with participatid(a;, vit, Xit) but not with the changes in outcomgi;,
unfortunately, does not work, because, andc; cab be correlated.
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Difference-in-diference-in-dfferences estimatqirobust to fixed-growth-@ects):

1 A0 (A2 | D — 20 (A2 | D). —
ATE(X)znZAyl(A:JD. 1)_iAy.(A;(;|D| o).

i=1 i=1
Rokust to an heterogenous fixed-growtfieet selection bias (# y)t. Redefine the errors as

Ut = G + it + 7it, &t = yit + 7it»
wherer;; are idiosyncratic errors that satisfy the conditional mean independence; withy;
given covariates, or (i, ¥i) L (71t 71it-1, 7it-2) Xits Xit-1, Xie—2. Then:

Yit = C+aDit + (i + V)t + B'Xit + (Ci + 7).

We assum®;; = Dit(Xit, Ci, vi)- Taking a first-diference:

Ayt =y + aADy + B/ Axit + (yi + An),
in which ADj is positively correlated withy; of the composite error term + Az Taking a
second-dierenceAx; = Axi; — AXir1 = (Xit — Xit-1) — (Xito1 — Xi-2):

A%y = aA®Dy; + B A%Xit + A%,
= aDj +ﬂ/A2Xit + A277it,

which purges the individual trending tergn from the error, sdjy 1L A%y, thus it is robust
to heterogeneous individuals withfidirent growth rates idy;. The identification condition
is (Ci, Vit, ¥i) AL (m1it» m1it-1, M1it—2)Xit» Xit—1, Xit—2. The same argument follows for the rest as the
first-difference case, only that it takes at least 3 periods, with 2 periods prior to the intervention
to implement this estimator.

[Abadie (2005) discusses the nonlinear, semiparametric estimation of DID estimator. Denote
y: as outcome value of periddIt shows one can estimate DID nonparametrically with

&[y11—Yoa|x. D =1] = &[hD. )1 -Yo)|X|.  h(D.X) = s Toxs-

because
S[ﬁ%&?(y,l - y,o)‘x] = S[ﬁ%&?(y,l - y,o)' x,D = 1] -G(x)

+8[e<1x)?§((x)(y1 Yo% D = 0] [1-GX)],

=&[y1-yo|x.D=1|-&[y1-yo|x. D=0,
8[ Y11= Yio| X. D:]-]_S[yo,l—)’o,o|X,D=0],

8[)’11—)’10|XD 1] [YOl—YOo|X D=1],
= average treatment effect on the treated

5[Y11—YO1|X D= 1]
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the fourth equality follows under the DID identifying assumptiéi} yo. — Yoo|x. D = 1| =
&|Yo1-Yoo|x.D=0]. Noting that linearity assumption in standard DID to be re-
strictive, he has shown a semiparametric way to approximate the unknown function
S[yil,l —yio,1|xi, D = 1]. It is well known that wherx; has relatively large dimension, it
poses a problem in nonparametric estimation. Approximation is given by solving

argmin Z [é(xi) {A(D1. x)¥i.1 - Yi0) — 9% 7)}2]
i1

1°4]
whereg(-) is an approximating function of choice such as polynomiakjinandxy; € X,
Xi € X, andXy € X. Thus we take:
8[Yi1,1 - Yioa| X, Dj = 1] = g(Xdi; 7)-

e DID: Operation Blackboard {Chinn, 2005). Effects of reallocation of teachers from large schools to small
schools with single teacher on school outcomes. Estimation is at the state level using the number of both
schools.

« [Banerjee efal. (200p) use DID in estimating tifiieets of remedial education on test scores.

o [Duflo (2007): DID between high- and low-intensity groups.

VIIl.2 Changes-in-Changes Estimation

In their seminal and important papgr, Athey and Tmbens (2006) proposed an entirely new
approach to program evaluation with before-after data. Unlike DID, which estimates the mean
of treatment effects under fixed-effect and constant treatnflierct @ssumptions, they show

how one can derive the entire counterfactual distribution, both no-treatment for the treated and
with-treatment for the control, under arbitrary treatmefae heterogeneity. The assumptions
they used in deriving the changes-in-changes (CIC) estimator for contigiaras

1. Asingle indexy; € U that explains the dierences in outcomag;;, given groupy, time
t, and covariateg;. Call U ability.

2. A common fixed outcome mappifg: U x T — Y with strict monotonicity inU,
3—8 > 0 (does not have to beftierentiable, strictly speaking). Commonality plays a big
role here, because it ensures that there is no fundamefitakdices between the treated
and the control with the same outcomeSo it is implied that there is nofilerence in
economic environment between the groups except for the treatment. This may be seen
as another way of addressing the ignorability of treatment.

3. Distribution ofU is assumed to be fixed through time within a group (or more precisely,
independent across time within a group),lbri. T|G. But the same individudldoes
not have to have the same valueudh different periods, only the distribution of them
to be unchanged. So any changes in outcome distribution is interpreted as changes in
functional forms oth(u,t).
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4. There exists a substantial common suparc Up.

Denote the random variably; as outcome of groug at timet. Groupg = 1 is the treated,
andg = 0 is the control. When we denote the counterfactual outcome, we will make the
(hypothetical) treatment statli3 explicit asYp . Program is implemented at tinte= 1.
Then, the counterfactual of the treated is denoteddy.

[Athey and Tmbens (2006)’s main theorem is:

FYo.n(y) = FY10 [F\?ch[) [FYDj_(y)]] . (30)

This shows how the quantile & 1; can be computéd?

Proofis relatively simple. Note:
Fyn®) = Prih(U.t) <yig.t] = PrlU <h(yt)|g.t|,

=Pr[U <h(y;t)|g] = Pr{ug < h X(y:1)].

=Pr[h(y;1)].
The second line follows because we asslwne T|G. Then:

Fyy®) = Fuglh ;0]
= (31)
Fyn[h(U, )] = Fuglh™ (h(U, T); 1]

So
h(U,T) = F;yl[ [Fug()]. (32)
Forg=0,t=0,
h(U,0) = F3j, [Fuo(u)]. (33
Apply 1) forg = 0,t = 1, thenFv,, [h(U, 1)] = Fuolh™ (h(U, 1); 1)]. Then
Fuo | Froa (U, D]] = h74(y; 1). (34)
From [33),h(U, 0) = Fgolo [Fuo(u)] so
h[h(y; 1).0] = Fg2 [Fuo (v )] = Fes [Fre )] (35)

*22 We first choosey11, the counterfactual outcome value in period 1, because we want to know at given value
of y how much its quantile would be in the counterfactual distribution. Then we find the quanyie oin
Fv,: the period 1 control distribution. We use the actual control group’s distribignbecause this is the
‘placebo’ outcome distribution we want to compare with, and it is assumed that the @ieledce between the
groups is the treatment. This quantilgives the how much the latent indey should be had the observation
Yo,11 been in the control group, which is counterfactual. For ¢hige can get its period 0 value wil’f'l;olo(e),
which we denote withygp. This is justified because the latent index’s ranking is assumed not to change over
time, or we are interested in the changes of outcome at the given quantile thus want to find the corresponding
quantile’s period 0 value. Then, we can WBg, to get the quantile ofgo to see what quantilgyg should have
been had it been included in the treated group. This is justified because of the common production function
assumption with a single latent index, so @6 = Y10, Up = U1. The obtained quantile is the counterfactual
quantile ofyg 11.
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wherethe last line used(34). Applyinf(B1) with= 1,t = 0, we haveh(U, 0) = F;llo [Fui(u)], so

Frao [0(U, 0] = Fu(u). )
Then
Fyn ) = Fua [y 1)
=Fyo[n[n s 0f]. [y @B
= Fyio[Fos [Frea ]| [by @) .

To state in the simplest way, we will estimate the treatmdlietce for the quantile of the
treated:

Ag = (Yil - y(io) - (yl(;)l - ygo), yﬁo = 3/2)0» 0+ égenerally.

So ;
Ag = yil - ygr

Under the common outcome mapping assumption, the counterfactyy ien‘yf])0 in control
with yﬁo = y‘go. y910 andygO are observations with the same valueupf Then, tracking the
change through time fqrgo, the change at quantif& should give the counterfactual fof,,
because the rank af are assumed to be invariant through time. Foryall(all 6) on the
common support withygg, this should give the entire distribution of counterfactual yeor.
One can see that it is assuming that grofijfiation does not matter in outcome. It is assumed
that if the unobservable ability; is the same, then the outcome in both periods should be the
samd&Z

The cookbook method for deriving the counterfactual, continuous outcome distribution for
the treated is:

1. Choosgyyg in the baseline of the treated. For this valyg, find the quantiley, in the
baseline of the control.

*23 Onecan rewrite[(3D) as:
Fy [Fyoo [Yio(Yo11 = V1| = . (37)

Using this, we can extrapola¥g to Yp1. Take any value o1, sayyio. This outcomeysig corresponds to a
specific valuau; viayio = h(u, 0). We can also find the value of if the chosen valug is to be hypothetically
found in the control group, becausgJ, 0) is common across the groups heblge= Uy for the sameY1p = Yoo.
Note that even withJ; = Ug, corresponding quantilé, anddy need not to be equal because the distribution
Fv,, and Fy,, (hence distributions otJ; and Ug, following common production function assumption and
monotonicity assumption) areftérent. Nevertheless, we can fiiglif for the chosery;g is to be found in
Fvgo- Using the transition (inverse) mappilngoll : ® — Yoz at quantilefly, we obtain the outcome that we
should observe in period 1 for such period 0 quarmileT his gives the counterfactual period 1 outcome for the
choseryo, Oryo11.
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Figure 5: Changes-in-Changes Algorithm forif1p € Yoo
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Note: For a giveny;o and its associated quantilg, we find the same value in contrg)y = y10 and find its
quantiledy. Then the counterfactual incrementYpin the absence of treatmentAsp 11 = yg‘} - yg%,
. . 122 122 0 0 2 2
thus CIC estimate ifg, =Yy} - yi5 — Ayoa1 = (¥oi — ¥1b) — (Ve — Yo3)-

2. For the quantiley, find the outcomsyy; in the second-period of the control. This is
the counterfactual outcome for the treated with baseline outgggia the absence of
treatment.

3. Repeat 1. and 2. for entire supporfifn Uo.

Since it gives you the entire distribution (on the common support), it gives the quantile
treatment effects for any quantile provided that there is a common support. It can be used
in reverse to obtain the counterfactual distribution for the control, e.g.,akand find the
guantile from the treated, and so on. It is also shown that it can be used for multi-period, and
multi-groups.

One can incorporate covariates by estimathyg: = yAXig: + Uig: Using the fixed-fect

Ti

model before the exercises. Get the fixébet estimateg = 3, % Then usecy in place

of yig0. The recommended procedurg of Athey and Tmbens 22006) is to estjpated’ di; +

B'Xit + Uiy whered;; = [gt,g(1-1t), (1-g)t, (1 - g)(1-t)]’ is a group-time dummy interaction
vector, andk;; is without an intercept. Then construct group-time-inclusive residual measure
¥it = Vit —[i'xi,t = S'di,t + 0;¢ for CIC estimation. This procedure accounts for cohort fixed-

effects, but not individual fixedfiects.

As this argument shows, incorporating covariates brings in the problem of consistently es-
timating the individual residuals. This is not possible for repeated cross-section data when
individual fixed dfects are present. Usefulness of CIC that repeated cross-sedticeswill
be limited under individual fixed-effects when we incorporate covariates.
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Figure 6: Two Inverse Mapping
quantile quantile
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Note: Inf is the greatest lower bound of the set, and sup is least upper bound of the set.

Fyt =infly € YIFv(y) > g},
FOP = supiye YIFv(y) < a).

For discrete outcomes, one observes masses at certain outcome values, thus one needs to
modify the strict monotonicity assumption to weak monotonicityhaf u. Accordingly, one
can identify the (lower- and upper-) bounds of counterfactual distribution. Before doing so,

one must properly define the inverse of the distribution functjon. Athey and Tmbens (2006)

define two inverse mappin,*, Fﬁ(‘l):
Fy* = infly € YIFy(y) > ql,
FOD = suply e YIFy(y) < g).

As [Ecure g shows, two inverse mapping agree whefy) is dense. For the flat segment, we

have:
FOV() < Fyi(a).

and
Fy[F{P@)] < a.

Hence for allg € [0, 1]:
Fy[F{P@)] <a< Fy[FeM@)-

Then their second main theorem (counterpart for the discrete outcome cases):

Fyio [Fg(;ol) (FY01(y))] < FY{\‘l(y) < Fyy [F\_(o:h (FY01(y))] : (38)

This proof is also relatively simple. Giveti; € Up, normalizingUg ~ U[0, 1]. Then:

Fya(Y) = Pr[h(Uo. t) <y] = supfu: h(u,t) = y}. (39)
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Probabilityis equal to the value afy becauselg is uniform on [Q 1], and it is supremum af such thah(u,t) = y by
definition. Then:

Fyn(y) = Pr[Y{\‘t < y] = Pr[h(Us,1) < y] = Pr[Uy < supfu: h(u,t) = y}],

= Pr[U1 < Fy, ()]
This gives
Frio[Flo (Frea )] = Pr[Us < Freo [FY) (Fra )]

UsingFy [F{ ()] < Fy [F3(a)] for all g € [0, 1], we have:

PrlUs < Py [Fleg (Froa )] < PrlUs < P [Fig, (Fras )] = Pr[Us < Py [, (Froo )]

40
= PI’[Ul < va(y)] =Fn®) 0
Similarly, Fy [F\;l(q)] >q,
Fyao | Fion (FYas )] = Pr{Us < Fgg [Fg, (Froa )] 1)
> Pr[U1 < Fyg,(¥)] = Pr{Us < Fyg, ()] = Fy ) .

Note that from [39) we havé-y,(y) = sup{u: h(u,0) < y}. Since we normalizetl, ~

U[o, 1] we have:

Fu,(u) = u.
Then the value oFy,,(y) gives the correspondirlg valueu. ForYio = Yoo = Y, corresponding
valueu is the same under the common mapping assumption. Thewifor Ygo = vy, dis-
tribution Fy, (u) is identified for the particular pointin the support olJ;, which is equal to
the value ofFy, (y). GivenU; C Uy, distribution overU; is identified byU; = Fv,,(Yoo), but
only at points withY;p = Yoo = Y. Once points folY1g = Yoo = Yy are identified, they define
the natural lower bound and upperbound for distributigiure 7 gives an illustration. There
are three masses gt!, y?,y°} such thatYoy = Yy and corresponding frequencies Fi,,(y)
andFy, (y). With normalization, we have thrde,,(y) as realization o)1, and corresponding
Fv,,(y) as its frequencies. Lower- and upper-bounds are defined naturally.

In the discrete case, one needs to add exogeneity of covariates and weak monotonicity of
h(u,x,t) in covariatesx to assumptions. Then covariates will help narrowing the bounds. This
happens because for ad(t, x;) anduX(t, x j) that are associated with the same outcorife
with x; # X;j, in general we haveX(t, x;) # uk(t, X;) thus adding more points in supportaf

Note that DID is a special case of CIC that the former imposes linearity and common treat-
ment dfect over entire support. CIC relaxes them by introducing two new assumptions, com-
mon outcome mapping and time-invariance of rank of ability. If it is a panel, then one can
track each individual to obtain transitional mappivigh — Yps, then time invariance of rank
is not necessatry.

CIC is different from quantile DID (QDID). For a givew,, the former fixes the period
0 outcome withy;o = ygo to define the quantilé of counterfactual observation, and obtain
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Figure 7: Point Identification with Bounds in Discrete CIC
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Note: Three values o¥p = Y10 = {y% Y2, Y%} are observed, with corre-
spondingFy,(y) and Fy, (y). By normalizationFy,(u) = u. For
Yoo = Y10, underlyingU are the same for both groupdy = U;. Noting
Fygo(¥) = sup : h(u,0) = y} we haveFyy,(y') = u'. Thus points on
support ofU; are identifiedu®, u?, u®, and its corresponding quantiles
Ful(u‘) = Fym(y"). Lower- and upper-bounds are defined naturally.

an intertemporal change at the quanila the control by taking/*?)1 - y*go, treating it as the
counterfactual change in time fgro. The latter fixes the quantisuch that(y1oY1) = 6,
then define the counterfactual observation as the quantile satisfgisgYo) = 6. Then the
counterfactual intertemporal change #ag is Y10 — Yoo = ygl - ygo. This, however, ‘does
not make sense’ because it ignores thfgedénce in outcome distribution between the treated
and the control. It is not immediate why we want to compare the same quantil&eredi
groups, if the distributions are not identical. Two distributions become identical if the treatment
assignment is random, hence QDID becomes relevant.

As one can see, this does not require the same individtmhave the same specifig,
only the rank to be the same across periods. So one can estimate CIC using the repeated cross
section data, provided that each period sample is representative. However, one may be hesitant
to attribute all the outcome fierences solely to the ‘ability), even after taking into account
the covariates, because one should expect idiosyncratic sligcks play some role. This
should not be a problem if the errol;; andVy;; are additive and if we are concerned only
with the mean impact, or DID, as the mean of such idiosyncratic shocks can be normalized
to be zerd@ So the interpretation is that CIC identifies the shock-inclusive treatnfistte

*24 |t is impossible to integrate oMyt because we cannot identify the joint distributionlgfandVyi;. We only
identify the transformed distribution of a single random variatje = h(Ug, VglG = g, T = t). With two
unobservables);, Vit and one observed outcome, one cannot backJputnd Vi without functional form
restrictions. Consider an examp¥e = VgiUg. One generally needs the changes in variables by defining
Yt = VgtUg, Xt = Vg, derive a joint distributions fofy, v, (%, yt) and integrateX; out to getfy, (y;). To integrate
out X;, we need to knowfy, v, (%, yt) as a function ofX; andY;. To be concrete, assumé; ~beta(ab),

Ug ~beta(a+ b,c). Then one can shovi(y) = beta(ab + c). But the problem is that, even the parametric
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if one compares quantile-by-quantile, not at the mean. This is the result of the single index
assumption that one can capture th@elence in outcomes only witlh. This limitation is the

same with other QTE estimators which we will cover later on. In contrast, DID estimator aver-
ages out the idiosyncratic shocks if the shocks are separable, because it imposes linearity and
constant treatmentfiect assumptions. If we impose linearity bfu,t) and assume constant
treatment &ects in CIC, then one can average out the idiosyncratic shocks by taking averages
over certain range of quantilE®! So CIC is a nonlinear generalization of DID.

Summary: Comparison of Estimation Methods
In evaluating the program, practitioners may ask one of the following questions:

1. Which method is most appropriate for the given data at hand?
2. Given the program implementation cycle and the resource constraints, which estimator
should we choose? How do we collect data for the chosen estimator?

Unfortunately, in most of the time, they ask the first question. This is because the evaluators
usually do not have sficient budget nor time, and they must deal with the problem with given
data at hand. It is typicallgx postdata that they have, so they must rely on cross-sectional
variations in outcomes and covariates to explain treatm@iatts. They thus need a broad
range of covariates and a large number of potential control pool. If these conditions are not
met, it is not likely that, whichever the method one uses, the estimates will give reliable answer
to the question. So one must be content with the bound-based method.

Even if a broad range of covariates and a large potential control pool are availeblpast
data, one still has to test the plausibility of exogeneity assumption. This is done by finding
ineligible and opt-outs, comparing lagged outcomes by treatment status, or estimate propensity
scoresG and inspect linearity of treatmenffect inG. We have pointed out that the first two
may be demanding in terms of data requirement, and the linearity test may be the best option.

If exogeneity is rejected using an eye-ball test, one can infer the direction of selectivity bias.
If G is nonlinear and increasing in the treatmeffieet, there will likely to be an upward bias.
Without any credible instruments, one cannot resolve the problem of self-selection. Again, one

assumptionare correct, we will only knova andb + ¢, but notb andc separately, so one cannot dedaceb
andc.

*25 Taking the mean for a certain range over quantile fig], then the separable idiosyncratic shock term will be
equal to its population mean of zero. But this will not give us a consistent estimator for ‘average’ quantile
treatment &ect for the chosen range, because quantile function can be nonlinear and so the average of quantile
estimators may not be the quantile estimator for the average over the rasgg, §a(9)] # d(eu,u,[6]). Even
if h(u,t) is linear,g(-) needs not to be linear, hence the equality does not hold.
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mustbe content with the bound-based method in this case.

Although very unlikely, if exogeneity is not rejected one can use several estimators to get
ATE. One caution is that covariate-conditioned A(H is equal to covariate-conditioned
ATE(x) under conditional mean independence, but unconditional;ASEnot the same as
ATE if covariate supporK; for the treated is a strict subset of entire supptriOne can use
regression-based estimators, parametric or nonparametric, propensity score based estimators,
matching-based estimators. The literature has not established the finite sample property of
these estimators, which makes us hard to choose from.

If an instrument is available, one can use IV estimator or Wald estimator. These have ad-
vantages that one can handle self-selectivity of the treatment sample. Such an estimator gives
LATE, not ATE. It is ATE of people whose treatment status is changed with the (in)eligibility,
hence local. It is further shown that, in the presence of heterogenous treatfiieets,dV
and Wald estimators may give weighted average of marginal treatrffentsewith unknown
weights. Thus applicability of IV-based estimator, despite being convenient in dealing with
endogeneity, is rather limited. Unfortunately, there is no clear concensus on the solution for
essential heterogeneity so far.

If one is fortunate enough to decide on sampling design before the intervention, one can
invoke on either randomization or before-after data collection, or even both. Randomization
will give the ITT estimator, but it is sensitive to placement and operational spscificities, and
its external validity is in question. Collecting the baseline always helps, as it gives more infor-
mation on the population. But the identifying assumption of most widely used DID estimator
is strong that pre-program condition cannot be correlated with participation decision. In the
meantime, it may be useful to extend the bound-based approach to the panel data setting where
one can control the additive individual effects.
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